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Abstract

This paper focuses on matrix multiplication algorithm, particularly square parallel matrix multiplication using Computer Unified
Device Architecture (CUDA) programming model with C programming language. Matrix multiplication is under the list of time-
consuming problems that require s huge computational resources to improve its speedup. As many studies have shown, it is not
easy to achieve high performance speedup in sequential matrix multiplication algorithm using larger input. The emphasis of this
study is to propose a parallel algorithm to calculate the product of two square matrices with improved speedup performance
compared to the sequential and OpenMP algorithms. In this research, biruni (super machine workstation) in the School of Computer
Sciences, USM, Malaysia with General Purpose Graphics Processing Unit (GP-GU) was used to parallelize the matrix product
algorithm. A comparison between parallel OpenMp versions and sequential algorithm with the proposed CUDA based algorithm
of this research was carried out to evaluate the speedup performance of the proposed parallel CUDA based algorithm. The overall
results show that CUDA based parallel matrix multiplication is approximately 400 times faster than sequential matrix multiplication
and 4 times faster than OpenMp matrix multiplication algorithms, respectively. Therefore, the proposed parallel algorithm can help
the researchers working with matrix multiplication application problems. It can also help mathematicians to easily calculate the
product of any two matrices and obtain the result in a shorter time.
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1. Introduction

The applications of matrix multiplication in real life problems are increasing daily. They are used to analyze weather
patterns [1], perform linear algebra operations [2], and recognize human faces for security purpose [3]. It was also
applied in autonomous vehicles and robotics [4], process control and graph analysis [5], scientific, and engineering
[6]. On other hand, matrix multiplication operations are time-consuming problems [4]. Sequential processing methods,
which require more processing time and storage, were traditionally used to perform matrix multiplication, but a Matrix
sequential algorithm is not efficient with larger input data [5]. Several Parallel programming algorithms have been
proposed to deal with big data challenge in matrix multiplication problem [7]. This paper presents CUDA based
parallel solution for square matrix multiplication problem using GP-GU shared memory architecture.

The term matrix (multiplication/ product), denoted C, is the multiplication operation that produces a new matrix
from two matrices denoted A and B; it can be mathematically defined as in Eq. 1, where i, j, and k are the elements of
the matrices [8].

©)ij = Z:;lAikB,q. (1)

In order to multiply two matrices, it must have an equal size of columns, as shown in Eq. 2, where the m’s denote
the same columns. Eq. 2 also shows the size of the product matrix; it can be observed that the product matrix’s size
always equals to the size of first matrix’s row times the size of second matrix’s column. In matrix multiplication, the
order of multiplying two matrices does not matte; it is associative operation which produces the same results if AB or
BA multiplication is performed [9].
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) were generating identical results.

Matrix operations, such as matrix multiplication, have numerous applications in science and technology [10]. They
are basic to algebra operations [2], graph and number theory, and digital control and signal processing [11]. All of
these applications require high ranked computational throughputs. Parallel processing is viable option for today’s real-
life applications [11]. Many researchers have proposed various CUDA-based matrix multiplication solutions for two
main reasons: to teach how CUDA is working or to parallelize matrix multiplication operation. For example,[12] have
used hypergraph partitioning technique with CUDA and GPU to parallelize matrix multiplication. The researchers of
this study partitioned the matrices into rows and columns to implement parallelization, and found that the hypergraph
partitioning technique can be applied to parallelize matrix-multiplication in shared memory architecture; however, this
technique does not consider efficiency programming. Moreover, [13] have proposed memory saving matrix
multiplication algorithm for NVIDIA Pascal GPUs with high performance. They have managed to reduce memory
usage using grouping techniques and utilizing shared memory efficiently. These scientists have achieved 4.3 times
speedup in single precision and 4.4 speedup in double precision. In addition to that, [14] proposed an efficient matrix
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multiplication algorithm on CUDA GPU. They focused on memory bandwidth efficiency and storage format to
achieve 2.5 times speedup. Different authors such as [15] have proposed CUDA based matrix multiplication algorithms
to introduce the CUDA programming model. Based on the readings, and reviews made of related studies, a parallel
matrix multiplication algorithm was proposed in this research.

2. Design of the parallel program

In general, the proposed solution in this research contains four functions: the main function, cpu_matrix_mult,
omp_matrix_mult, and gpu_square_matrix_mult kernel function. Furthermore, input, output and CUDA header files
are included at the top of the four functions, and 16 block sizes are defined. The main function is responsible for
running the program. Inside the main function, memory allocation and deallocation of both host and device variables
occurs. As well as copying data from host to device variables and vice versa; asking the user to input matrices sizes;
transferring results to the host; automatically generating input array elements randomly; invoking CPU, OpenMp, and
kernel function; and calculating the time taken by both sequential and parallel algorithms.

Due to the length of the main function, the researchers of this work decided to explain the main function’s code. At
the beginning, the code inside the main functions declares input variables, prompts the user to type matrices size, and
holds it in the input variables. After that, it allocates memory for the host variables in the RAM, name h_a for matrix
1, h_b for matrix 2, h_c for the GPU result, and h_cc for the CPU result. Then, it initializes both input matrices (h_a,
h_b) using two nested for-loops per each randomly, declares timing measuring variables with their starting and ending
events, and starts to count the execution time of GPU version. Next, it allocates memory space for the device variables
on the device, name d_a for matrix 1, d b for matrix 2, d_c for the result. Also, inside the main function, there is code
that copies the data of matrices h_a and h_b from host to device memory matrices: d_a and d_b, code that calculates
GPU Grid, and Block dimensions, and Calls the kernel function. Also, the main function contains code that transfers
results from device to host: d_c to h_c, synchronizes the threads, stops calculating time on GPU and prints its elapsed
time. At the bottom of the main function, the code starts the CPU version runtime calculation, invokes CPU function,
Stops calculating runtime on the CPU, and prints its elapsed time. Finally, the main function code starts the OpenMp
version runtime calculation, invokes OpenMp function, stops calculating runtime on CPU, prints its elapsed time,
validates the results computed by GPU, and frees the allocated memory spaces.

Second, cpu_matrix_mult function is a naive function that performs matrix multiplication on the host (CPU)
seriously by computing the matrix multiplication one after another. It loops through the indices from i=1 through m,
j=1to k, and A=1 to n using three nested loops. Fig. 1. shows the pseudocode of serial naive matrix multiplication. As
the figure shows, three nested for-loops have been used to perform the matrix multiplication. However, the runtime
speed of this algorithm is slow compared to the CUDA-based parallel algorithm.

Algorithm: Naive Matnx multiplication on CPU

Input: Square Matrix size n = {10,20,50,200,500, 1000,...}, this will be used to decide the square
matrices dimensions

Output: time taken to multiply two matrices of the given size on CPU, and Speed up

void cpu_matrix_mult h_a, int *h_b, int *h_result, int m, int n, int k) {

Fori=0ton-1do

{
For j=0 to n-1 do
{
it tmp = 0.0;
Forh=0ton-1do

tmp+=h afI*n+h]*h bfh*k+j};

h_result [I * k + ] = tmp;
)

Fig. 1. cpu_matrix_mult function.
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gpu_square_matrix_mult is a kernel function that computes the matrix multiplication on the GPU device to improve
the speedup. It employs multiple threads to multiply the input matrices elements simultaneously. In addition to that,
this parallel algorithm, divides the matrices to be multiplied into blocks, and each block multiplication will be
performed by different threads simultaneously. The algorithm uses a CUDA-based technique called tile to increase the
computation to the memory ration. Moreover, the algorithm applies __ syncthreads () function as a block level barrier.
Since all threads are performing the multiplications in different blocks simultaneous, and there is dependency in the
results, it is necessary to synchronize the threads, therefore,  syncthreads function stops the thread (s) until all other
threads finish their computation and reach the barrier. Fig. 2 demonstrates CUDA-Based parallel matrix multiplication.

The parallel matrix multiplication takes the matrix sizes as an input argument. After dividing the matrices dimension
into 16 blocks, the algorithm will automatically employ x times y threads to perform the multiplication simultaneously.
After finishing the computation, the algorithm will show the execution time of the algorithm measured in milliseconds.
Fig. 3 shows a flow chart for the proposed CUDA-Based parallel program. In Fig. 3, it can be observed that the follow
chart contains the design of parallel program that can parallelizes the matrix multiplication.

Algorithm: CUDA-BASED Parallcl Matrix multiplication on GPU

Input: Square Matrix size n ={10,20,50,200,500, 1000,...}, this will be used to decide the square

matrices dimensions

Output: time taken to multiply two matrices of the given size on both GPU and CPU, and Speed up

1. // Create the kernel function to employ the matrix multiplication on GPU as followings: -

2._ global__ void gpu_square_matrix_mult (int *d_a, int *d_b, int *d_result, int n) {
3.__shared__int tile_a[BLOCK_SIZE] [BLOCK_SIZE]; // Increase Computation-to-Memory Ratio
4. __shared__ int tile_b[BLOCK_SIZE] [BLOCK_SIZE]; // Incrcasc Computation-to-Mcmory Ratio
5.int row = blockldx.y * BLOCK_SIZE + threadldx.y; // Calculate the row index of tail_a and tail_b
6. int col = blockldx.x * BLOCK_SIZE + threadldx.x; // Calculate the column index of tail_a and

tail_b
7. int tmp, idx; / Declare Temporary variable and ID index of threads
9. for (sub = 0 to gridDim.x) {// Initialize the ID index
10.  idx =row * n + sub * BLOCK_SIZE + threadIdx.x;

I1. if (nis not divisible by BLOCK_SIZE)

12: tile_a [threadldx.y] [threadIdx.x] = 0;// Set tile_a equal to zero;
13. else

14. tile_a [threadIdx.y] [threadldx.x] = d_a[idx]:

15.  idx = (sub * BLOCK_SIZE + threadldx.y) * n + col;

16. if (n is not divisible by BLOCK_SIZE)

17. tile b [threadldx.y][threadldx.x] = 0/ Set tile b equal to zero

18. else

19. tile_b [threadldx.y| |threadldx.x] = d_b[idx];

20. __syncthreads () ;//use __syncthreads () function as a barrier. If 1 thread reaches this, it must wait

until all the threads reach
21. for (k=0 to BLOCK_SIZE; ++k)
22. tmp += tile_a[threadldx.y] [k] * tile_b[k][threadIdx.x];//each thread multiples one block
23. __syncthreads (); // block level barrier}
24. if (row and column do not exceed the array sizes)
25, d_result [row * n + col] = tmp;

206. }// End of the algorithm

Fig. 2. CUDA-Based parallel matrix multiplication.
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Fig. 3. Flow chart of program design.

3. Experimental design

To know how the proposed algorithm can faster the computation of matrix multiplication, two different 2D square
matrices with 10 x 10, 20 x 20, 50 x 50, 200 x 200, 500 x 500, and 1000 x 1000 sizes per two matrices to be multiplied
have been tested by using 100, 400, 2500, 40000, 250000, and 1000000 threads, respectively. The calculation of actual
threads is carried out by squaring the input size (n); e.g. if n=10, the actual number of threads equals to 100. Each The
matrices are divided into block (s), and each block have 256 threads; e.g. if the input size is 20, we divide 20 by 16
blocks, which is almost equals 2, then, by squaring 2, we got 4 blocks; then multiply 4 blocks by 256 threads to get
the maximum threads of that multiplication which equals 1024 threads. In this case, only 400 threads will perform the
calculation and the rest will be idle. Table 1 shows the matrices sizes multiplied in this research, number of blocks per

input, actual threads, and maximum threads.

Table 1. Matrix sizes and threads.

Matrix size # of blocks Actual number of the threads Maximum number of blocks
10x10 1 100 256

20x20 4 400 1024

50x50 16 2500 4096

200x200 169 40000 43264

500x500 1024 250000 262144

1000x1000 3960 1000000 1016064
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4. Performance analysis

This section explains the analysis carried out to evaluate the performance of the proposed CUDA based parallel
matrix multiplication algorithm. In this research, sequential functionally was also designed to calculate the speedup
of the parallel version. In order to find an accurate runtime average results, each experiment was run at least 10 times,
and the average results was recorded. To validate and confirm the accuracy of the proposed CUDA based matrix
multiplication result, it was compared and confirmed that the CPU matrix multiplication result is identical with GPU
matrix multiplication result. First, the time taken by the sequential algorithm was calculated and recorded in a
Microsoft Excel spreadsheet table. Fig.4. (a) shows the sequential runtime results measured in milliseconds. The
sequential results have confirmed that naive matrix multiplication algorithm is not good choice as the input size is
getting bigger and bigger (Big Data). To overcome the drawbacks of sequential algorithm, CUDA based parallel
matrix multiplication algorithm was proposed and its runtime was calculated to check how fast the parallel algorithm
could be carried out compared with the sequential. Fig.4. (b) display the parallel runtime in milliseconds.

Sequential Execution Time

CUDA-Based Results fo Compute Product Matrix

Run-time in Milliseconds
Run-fime in Milliseconds

Matrix Inpnt Sizes

Matrix Input Sizes
Fig. 4. (a) Sequential runtime; (b) Parallel runtime.

From the results of CUDA-based runtime, it can be observed that the parallel algorithm is only good practice with a
big data. After calculating both sequential and parallel algorithms runtimes, a comparison between the two and an
OpenMP version is conducted. The aim of this comparison was to determine which parallel programming model
(CUDA and OpenMP) achieved better performance in terms of runtime speed in matrix multiplication. To simplify
the analysis, a main table (Table 2) containing the three algorithm (sequential, OpenMP and CUDA) runtime results
was created.

Table 2. Runtime to compute product matrix.

Matrix size/ 10x10 20x20 50x50 200x200 500x500 1000x1000
programing model

Sequential runtime in 0.013136 0.0965696 1.384032 88.4987755 1391.242531 14934.1547
milliseconds

OpenMP runtime in 0.1517626 0.2649897 1.359649 34.1778403 387.5622438 4013.944263
milliseconds

CUDA runtime in 0.2295712 0.3680182 0.2459904 0.5291488 3.3252672 3.3252672

milliseconds

According to Table 2, the sequential algorithm achieved better performance in small input sizes (10x10 and 20x20)
compared with both parallel algorithms. In this case, both of the parallel algorithms are slower than the serial algorithm
due to not lack of computation to be done by the several threads (100 threads in 10x10 and 400 threads in 20 x20)
created and the overhead associated with creating and controlling the threads. As Fig. 5 shows, the time taken by both
CUDA and OpenMp algorithms is more than the sequential runtime in small input size.
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Small Input Stz

‘ CUDA Algorithm

OpenMp Algorithm

[l sccotial Algorithm

Fig. 5. Small Input Size Result Analysis.

Similarly, the OpenMP algorithm achieved better performance than CUDA algorithm in 10x10 and 20x20 input
sizes. This is due to the time taken by the CUDA kernel function to create idle threads (only 100 and 400 threads have
been used out of 256 and 1024 threads). As the input size increases (50x50 onwards), the CUDA- based parallel
algorithm beats the other algorithms. It achieves higher speedup compared with sequential and OpenMp algorithms.
This means that CUDA based matrix multiplication algorithm is applicable in big sizes. Similarly, OpenMp algorithm
is better than sequential algorithm in large input size matrices. Fig. 6 displays a computational comparison graph
between the three algorithms for big input size.

Big Data

Run-time in Milliseconds

Matrix Input Sizes

Fig. 6. Big Data Computational Graph.
5. Results and discussion

This research offers the chance to investigate a method to compare the performance of popular parallel
programming models for shared memory architecture with sequential algorithm using matrix multiplication. Six
different sized matrixes have been multiplied to see the runtime of the sequential algorithm. To compare and calculate
the speedup of the parallel algorithms (CUDA-Based algorithm and OpenMp algorithm), the same number of threads
has been employed to multiply between same number of matrices input sizes. To get the speedup, the sequential time
was divided by the parallel time. Table 3 show the speedup of the proposed parallel program in 10, 20, 50, 200, 500
and 1000 input sizes with 100, 400, 2500, 40000, 250000, and 1000000 threads.

Table 3. Speedup.

Input size 10x10 20x20 50x50 200x200 500x500 1000x1000
Threads 100 400 2500 4000 2500 1000000
OpenMp 0.08655624 0.364427749 1.017933305 2.589361256 3.589726691 3.720568528

CUDA 0.5722063 0.37500182 5.63624272 167.258468 418.3873555 832.84464
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From the speedup results, it can be seen that the runtime speed of the first two inputs are less than 1, which indicates
that the parallel speedup is less than the sequential speedup due to small input sizes. There are two main reasons
reduced the speed of the mentioned input sizes. First, the data associated with the threads are not enough big as
providing a lot of processing elements, therefore the available resources cannot be utilized. Second, there is an
overhead generated while adding more threads in the computation, which slows down the speed.

6. Conclusion

This paper has presented Square Matrix Multiplication using CUDA on GPGU. There are other two algorithms
(Sequential algorithm and OpenMp algorithm) used in this research to calculate the speedup of the proposed algorithm
and compare it with the CUAD algorithm. A performance analysis between the three matrix multiplication algorithms
are performed. Comparative analysis has shown that the CUDA-based parallel matrix multiplication algorithm
runtime speed is better than the sequential and OpenMP matrix multiplication algorithms speed. The results
acknowledged the capability of CUDA to reduce the processing time needed in such problems that require big
computational resources. This work can be further improved by using hybrid technique (CUDA with OpenMP) to
increase the speedup of matrix multiplication. This work was not able to achieve 4.4 speedup due to limited time. The
proposed solution in this research can be used as a general guide for information systems practitioners to speed up
data processing and data distribution. They can select several suitable processors for their data processing and
distributing phase to reduce the overall processing time.
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