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ABSTRACT Conditional GenerativeAdversarial Networks (CGAN) have shown great promise in generating
synthetic data for sensor-based activity recognition. However, one key issue concerning existing CGAN
is the design of the network architecture that affects sample quality. This study proposes an effective
CGAN architecture that synthesizes higher quality samples than state-of-the-art CGAN architectures. This
is achieved by combining convolutional layers with multiple fully connected networks in the generator’s
input and discriminator’s output of the CGAN. We show the effectiveness of the proposed approach using
elderly data for sensor-based activity recognition. Visual evaluation, similarity measure, and usability
evaluation are used to assess the quality of generated samples by the proposed approach and validate its
performance in activity recognition. In comparison to the state-of-the-art CGAN, the visual evaluation and
similarity measure demonstrate that the proposed models’ synthetic data more accurately represents actual
data and creates more variations in each synthetic data than the state-of-the-art approach respectively. The
experimental stages of the usability evaluation, on the other hand, show a performance gain of 2.5%, 2.5%,
3.1%, and 4.4% over the state-of-the-art CGAN when using synthetic samples by the proposed architecture.

14 INDEX TERMS Activity recognition, deep learning, generative adversarial network.

I. INTRODUCTION15

Pervasive computing and sensing technologies have16

advanced dramatically, enabling automatic analysis and17

recognition of human behavior and activities [1]. One of18

the most important applications of this topic is Sensor-19

based Activity Recognition, a research field that recognizes20

human activities by analyzing motion data collected via fixed21

or wearable sensors [2]. In the first, sensing technologies22

are either tagged to a certain location and human activity23

inference is based on the user’s interaction with the tagged24

object, or they are deployed in an environment where no25

tag or device is required. Passive infrared sensors, pressure26

sensors, and contact switches are examples of fixed sensors.27

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

In the second, the sensing technologies are worn by users 28

or attached to portable devices such as mobile phones and 29

smartwatches. Accelerometers and gyroscopes are examples 30

of wearable sensors. Wearable sensors are ubiquitous, unob- 31

trusive, cheaper, less harmful, easier to deploy and use, and 32

capable to support real-time activity recognition compared to 33

other sensing modalities. 34

Because of these advantages, several machine learning and 35

deep learning methods have been explored to classify and 36

recognize human activities using wearable sensors such as 37

accelerometers, and gyroscopes. Machine learning methods 38

for sensor-based activity recognition use hand-crafted fea- 39

tures that are manually extracted with the help of human 40

domain experts [3], [4]. However, expert-driven feature 41

extraction methods have issues [5]. First of all, domain 42

experts can only learn very limited features [6] related to 43
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some statistical information including mean, frequency, vari-44

ance, and amplitude which cannot fully support the dynamic45

nature of today’s ubiquitous and seamless collection of wear-46

able and mobile senor streams [7]. These shallow features47

also fail to support modeling complex activities [8] and48

involve very time-consuming feature selections [9]. Second,49

manually engineered features are error-prone which may50

result in the loss of important information for activity recog-51

nition [10]. This affects the performance and accuracy of52

the human activity recognition system [5]. Third, the cur-53

rent manual feature extraction is application-dependent or54

problem-specific that cannot be transferred to another activity55

with similar patterns. Finally, there is no universal rule for56

selecting appropriate human activity features.57

To overcome the limitation of feature engineering, deep58

learning methods have been widely adopted for sensor-based59

activity recognition to automate feature extraction and extract60

higher-level representation to recognize human activities [4],61

[11]. Although deep learning methods have been shown to62

be effective, the methods require a huge amount of training63

data which is challenging to collect in sensor-based activity64

recognition due to the cost and the time required to collect65

the training data as well as battery and storage capacity con-66

straints of sensing technologies. For this reason, researchers67

address the scarcity of training data in sensor-based activity68

recognition through data augmentation. Several studies used69

data augmentation to increase the size of sensory data [12],70

[13], [14], [15], [16]. There are two types of sensor data aug-71

mentation for activity recognition: basic data augmentation72

and deep learning data augmentation methods. Basic data73

augmentation techniques use conventional algorithms to per-74

form different data augmentation techniques that add noise to75

the sensor readings, increase/decrease the magnitude of the76

sensor readings, or flip the sign of the original sensor data77

[17]. One drawback of the basic data augmentation method78

is generating only limited samples that are not suitable for79

training deep learning models [18].80

Recently, deep generative models have shown impres-81

sive results in generating massive samples for sensor-based82

human activity recognition [19]. This is to say that applying83

data augmentation on encoded inputs rather than raw sen-84

sory data generates more plausible synthetic data due to the85

manifold unfolding in feature space [20]. Two techniques can86

be used to apply data augmentation using deep generative87

models. These two techniques are Variational Autoencoders88

(VAEs) and Generative Adversarial Networks (GANs).89

VAEs are generativemodels that learn the low-dimensional90

representation of sensor data points. It consists of two net-91

works (encoder, decoder) and a loss function. The encoder92

converts input data to small latent (hidden) space while the93

decoder maps latent space input into original input. The loss94

function is the negative log-likelihood with a regularizer to95

penalize the decoder mistakes [21]. VAEs data augmenta-96

tion techniques are applied in several areas including speech97

recognition [21], traffic estimation [22], text generation [23],98

adverse drug reactions detection [24], and others. However,99

VAE is not well known in synthetic sensor data generation 100

for human activity recognition. This is because synthetic data 101

generated by VAEs tend to be more blurred. 102

GANs generate more realistic synthetic data than VAEs 103

in the sensor-based activity recognition field [25]. Due to 104

its capacity to create verisimilar synthetic examples, GAN 105

has become the most prominent data generative model for 106

overcoming the lack of data challenges for sensor-based 107

activity recognition. One of the recent achievements of GAN 108

network architectures for sensor-based activity recognition 109

is developing the Unified Conditional GAN (CGAN) for 110

synthesizing more than one human activity data in a single 111

training process [26], [27]. However, state-of-the-art CGAN 112

eliminates the use of fully connected layers in their model’s 113

generator and discriminator. This architectural choice sug- 114

gested by [14] is also adopted by themajority of other existing 115

GANs without investigating its effect on sample quality. 116

The main objective of this study is to develop an improved 117

CGAN architecture that combines convolutional layers with 118

multiple fully connected networks in the input and output 119

layers of the generator and discriminator to generate more 120

realistic synthetic activity signals. 121

This study’s contributions are summarized as follows: 122

a. To our best knowledge, we are the first to propose an 123

enhanced CGAN architecture that combines convolu- 124

tional layers with multiple fully connected networks in 125

the input and output layers of the generator and discrim- 126

inator respectively to generate more quality synthetic 127

samples for sensor-based activity recognition. 128

b. We conduct comprehensive experiments to compare 129

the quality of the generated samples by the pro- 130

posed approachwith the state-of-the-art approach using 131

visual and similarity measure evaluation techniques. 132

The visual evaluation and similarity measure tech- 133

niques demonstrate that the proposedmodels’ synthetic 134

data more accurately captures the real data and creates 135

more variations than the state-of-the-art approach. 136

c. The performance of the proposed approach is trained on 137

elderly datasets for sensor-based activity recognition. 138

Using synthetic samples, the proposed architecture out- 139

performs the state-of-the-art CGAN by 2.5%, 2.5%, 140

3.1%, and 4.4%. 141

The rest of this paper is organized as follows. Section 2 142

reviews the related work, Section 3 details the proposed 143

architecture, Section 4 explains the experimental setup, the 144

performance of the proposed architecture is evaluated in 145

section 5, and Section 6 concludes the study. 146

II. RELATED WORK 147

Activity Recognition refers to the process of identifying 148

human movements and actions based on motion data col- 149

lected through digital cameras and sensor devices [28], [29], 150

[30], [31]. Human Activities recognized by activity recogni- 151

tion systems can be classified into two main categories: tran- 152

sitional and basic human activities [32]. Transitional physical 153
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activities are simple events with a small duration in the154

order of seconds. These activities are further divided into155

two subcategories: gesture and transition. Gesture refers to156

the visual movements of a part of the human body such as157

the arm, hand, head, and finger to communicate nonverbally158

[33], while transitions are the activities that connect two dif-159

ferent human activities such as lie-to-sit, lie-to-stand, stand-160

to- sit, stand-to-lie, sit-to-lie, and sit-to-stand [32]. On the161

other hand, basic activities are human activities with a long162

duration in the order of minutes. These activities can be163

characterized as either dynamic activity or static activity.164

Dynamic activities are continuous activities with periodicity165

(i.e., walking, running), while static activities are activities166

with static posters (i.e., sitting, standing). Existing activity167

recognition approaches can be divided into two categories:168

vision-based activity recognition and sensor-based activity169

recognition [34], [35]. The vision-based activity recognition170

approach analyzes digital images and/or video sequences171

with human motions from cameras to recognize human activ-172

ities [19]. Initially, this approach has been a hot scientific173

topic. Many researchers investigated human activity recogni-174

tion from images and videos [29]. This is due to its wide appli-175

cations in sports, surveillance systems, health care, smart176

rooms, video retrieval, and human-computer interfaces [36].177

Later, the sensor-based activity recognition approach became178

a popular and fast-growing topic [37]. This is due to tech-179

nological advancements and low prices of sensor devices as180

well as the issues of the vision-based approach including181

privacy, space, cost, angle, obstruction, and light dependency182

issues [12], [38].183

Sensor-based activity recognition has achieved good184

progress by utilizing various deep learning classifiers such185

as Convolutional Neural Network, Restricted Boltzmann186

Machine Restricted, Deep Autoencoder, Sparse coding, and187

Recurrent neural network [4]. This is due to the automatic188

feature extraction that deep learning methods employ to189

automatically generate human activity features and select190

the best ones [39]. The deep learning models are trained191

with huge amounts of labeled data which is challenging in192

sensor-based activity recognition for various reasons. First,193

data collection and dataset creation with hundreds of subjects194

with different age groups are expensive and time-consuming195

with great effort requirements [40]. Collecting high-quality196

data requires a huge number of participants, logistics, costs,197

experimenters, equipment, sensor modalities, and long-term198

recordings. Sensors also have storage and battery limitations.199

Data annotation is another issue. Manual annotation of the200

collected data with activity labels is expensive, physically201

laborious, and error-prone. Annotating these activities may202

also dictate requiring domain experts for annotation purposes.203

One of the best methods for overcoming limited datasets204

in activity recognition using deep learning is data augmen-205

tation [41]. GAN, originally proposed by [42], has domi-206

nated data augmentation methods for sensor-based activity207

recognition using deep learning as it generates more realistic208

synthetic data than other data augmentation methods [25].209

It contains two components built by multilayer perceptron: 210

generator and discriminator. The generator takes a noise vec- 211

tor, which is randomly generated via a-priori distribution, 212

as an input to generate fake samples. It maximizes the proba- 213

bility of the fake samples being classified as real. The real and 214

fake samples are then fed into the discriminator to estimate 215

the probability that the fake data is drawn using the real data 216

[43]. Equation (1) contains the overall objective function of 217

GAN where G is the generator, D is the discriminator, z is an 218

a-priori distribution noise, pz(z) is fake data distribution, and 219

pdata(x) is real data distribution. 220

minG maxD = Ex∼pdata(x)
[
log (D (x))

]
+ Ez∼pz(z) 221

+
[
log (1− D (G(z)))

]
(1) 222

GANs for sensor-based activity recognition fall into two 223

categories: semi-supervised and supervised GANs. Semi- 224

supervised GANs were mainly used to overcome left-out 225

user’s activity recognition, which may have declined the 226

recognition performance of the learning model [44]. Any 227

human subject whose data is not fed to the deep learning 228

model for training is a left-out user. A limitation of semi- 229

supervised GANs is that they require the use of test data 230

during the training phase. In addition to that, a different model 231

must be trained for a single or group of target subjects [43]. 232

However, the focus of this study is to improve sample qual- 233

ity of state-of-the-art GANs that generate synthetic data for 234

sensor-based activity recognition in a single model training 235

process without using any data from the test set during the 236

training. This could be achieved using supervised GANs. 237

The first supervised GAN for sensor-based activity recogni- 238

tion using deep learning was proposed by Wang et al. [45]. 239

They developed a GAN framework called SensoryGAN that 240

contains a generator and a discriminator. First, their method 241

takes random noise and real sensor data as input. Then, the 242

generator and the discriminator play a mini-max game to 243

generate synthetic sensor data for three human activities: 244

stay, walk, and jog. They also applied three visualization 245

techniques: local, global, and memory independent to satisfy 246

the GANs community from computer vision while evaluating 247

the quality of generated data. 248

Nevertheless, the limitation of this study is that it can 249

generate data for a single class of activity but not accom- 250

modate various classes of different human activities in a 251

single training process. This is time-consuming and makes 252

the learning process long. Shi et al. [46] also implemented a 253

DCGAN-based data augmentation method called HARAug- 254

GAN to enlarge the activity scope of the SensoryGanmethod. 255

Although they consider more than three activities in their 256

method, their method is not unified as they generate the 257

sensory data for each activity separately. Hong et al. [26] 258

solved this issue by developing a unified model for gener- 259

ating synthetic data of 5 human activities (standing, laying 260

down, walking, cycling, and jogging) in a single training 261

process. This is achieved by adapting CGAN architecture that 262

adds a conditional factor with class label information to the 263
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TABLE 1. Architecture of the unified CGAN’s generator [26].

TABLE 2. Architecture of unified CGAN’S discriminator [26].

generator and discriminator models. The conditional factor264

c here is the label of the human activities and real data input265

is sensor-based human activity signals. The network architec-266

ture of this model restricts the use of fully connected networks267

in the input layer of its generator, G(z|c), and the output268

layer of its discriminator, D(x|c). Four 1-D CNN layers with269

rectified linear unit (ReLU) activation function followed by270

dropout, two LSTM layers with Tanh activation and two fully271

connected layers with rectified linear unit (ReLU) activation272

function make up its generator while two 1-D CNN layers273

with dropout each and two fully connected layers with a274

rectified linear unit (ReLU) and sigmoid activation functions275

make up its discriminator. Table 1 and Table 2 show the276

architecture of the Generator and Discriminator respectively.277

Li et al. [27] have also proposed a unified GAN model278

named ActivityGan for generating sensor-based activity279

recognition. However, their model eliminates the use of fully 280

connected from the GAN network. Its network architecture 281

consists of a 1D-convolution chain and 1D- transposed convo- 282

lution chain while CNN architecture is adopted to build their 283

discriminator. 284

Literature confirms that state-of-the-art Unified GAN net- 285

works for generating sensor-based activity recognition data 286

have adopted models that eliminate or restrict the use of fully 287

connected layers from the GAN network architecture. This 288

hurts the output quality of the GAN network [47]. This study 289

proposes an enhanced CGAN architecture that combines con- 290

volutional layers with multiple fully connected networks in 291

the input and output layers of the generator and discriminator 292

respectively to generate better synthetic activity signals as 293

explained in the next section. 294

III. PROPOSED MODEL 295

The proposed method in this study, the Fully Connected 296

CGAN (FCGAN)Model, enhances theUnifiedCGANmodel 297

architecture by Hong et al. [26] to improve sample gener- 298

ation quality. Unlike the state-of-the-art Unified GANs, the 299

Fully Connected CGAN converts the low-dimensional fake 300

input of the generator to a high-dimensional space of the 301

activity signals. This is achieved by employing three fully 302

connected layers as embedding layers for the first task of the 303

generator, followed by convolutional and LSTM layers for 304

the second and third task respectively. The fully connected 305

layers employed as the first task of the generator learn the 306

relationship between noise vectors and human activity fea- 307

tures by mapping noise vectors to activity features of the 308

human activities. This allows the model to generate subtle 309

variations in different spatial zones, which helps the generator 310

to synthesizing more realistic samples. Table 3 shows the 311

generator’s architecture of the fully connected CGAN. 312

This study also enhances the discriminator’s network archi- 313

tecture of the base model by adding three fully connected 314

networks to the discriminator’s network. This provides the 315

functionality to convert the discriminator’s input to a lower- 316

dimensional space before classification, preventing the dis- 317

criminator’s loss from becoming too low. In this regard, the 318

generator learns faster, leading to a faster model convergence. 319

Table 4 shows the discriminator’s architecture of the fully 320

connected CGAN. 321

The used fully connected networks in the FCGAN gener- 322

ator’s and discriminator’s architecture comprise three fully 323

connected layers with almost similar configurations to the 324

base model as a recent study show impressive results in 325

having three fully connected layers with convolution layers 326

in GANs generator and discriminator architecture [47]. 327

IV. EXPERIMENTAL SETUP 328

In this research, a sensory dataset collected from elderly sub- 329

jects using an accelerometer and gyroscope is adopted to train 330

the generative and classification models in this study. The 331

subjects of the dataset were asked to perform walking, stand- 332

ing, sitting, lying down, sit-to-lie, sit-to-stand, lie-to-sit, and 333
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TABLE 3. Architecture of the FCGAN’S generator.

TABLE 4. Architecture of the FCGAN’S discriminator.

stand-to-sit activities in their preferred style and pace. The334

elderly dataset was sampled in fixed-width sliding windows335

of 2 seconds and 50% overlap (100 readings/window). A full 336

description of the used dataset can be found in section 4.1.1 337

of [48]. 338

Preprocessed data is used to train the FCGAN and compare 339

it with the state-of-the-art Unified CGAN by Hong et al. [26]. 340

Both models learn the latent patterns of human activities in a 341

single training process. The models’ training was continued 342

for 1000 epochs with a batch size of 60. The experiments 343

were implemented in Google Colaboratory (also known as 344

Colab)’s Jupyter notebook environment using Keras python 345

library with Tensorflow as the backend. Google Colab is 346

chosen due to its runtime configurations for deep learning 347

applications and free access to a robust GPU. 348

V. MODEL EVALUATION 349

This study uses four techniques to evaluate the performance 350

of the proposed approach: training evaluation, visual evalua- 351

tion, similarity measure evaluation, and usability evaluation. 352

A. TRAINING EVALUATION 353

GAN fully converges when the discriminator cannot dif- 354

ferentiate real examples from fake ones and is considered 355

stable when the generator’s active models did not have a 356

high loss value after model convergence. The stability and 357

the speed of GAN full convergence are highly associated 358

with the loss pattern of the generator and discriminator as 359

it dictates the number of epochs required by the models to 360

fully converge. The objective of the first evaluation technique, 361

training evaluation, is to provide more insights into how far 362

the proposed architecture is more stable and achieves faster 363

model convergence. It visualizes the proposed architecture, 364

FCGAN, model convergence, and stability and compares it 365

with the state-of-the-art CGAN unified CGAN architecture. 366

This is performed by extracting the discriminator’s loss, 367

and generator’s loss information during the models’ training 368

process. 369

Figure 1 compares the discriminator’s loss of the Unified 370

CGAN with the discriminator’s loss of the FCGAN. It shows 371

that the FCGAN discriminator has higher loss values than the 372

Unified CGAN discriminator across all epochs. 373

Discriminator’s higher loss has the potential to provide 374

larger gradients to help the generator learn the data dis- 375

tribution faster as shown in Figure 2 which visualizes the 376

generator’s loss of the compared models. As can be observed, 377

the FCGAN generator scores lower loss values compared to 378

the Unified CGAN. This leads to a faster model convergence 379

and achieves better learning stability. 380

The experiments show that the generator of the Unified 381

CGAN starts to converge at epoch 874 while the generator 382

of the Fully Connected CGAN starts to converge at epoch 383

235. This is considered the first stage of full convergence of 384

both models. This study uses the generated data in this period 385

for investigation and analysis. The experiments also confirm 386

that the FCGAN, unlike the Unified CGAN, remains more 387

stable after its first stage till its convergence at the end of 388

training epochs. On the other hand, the Unified CGAN fails 389
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FIGURE 1. Comparison of discriminator’s loss of Unified CGAN and
FCGAN.

FIGURE 2. Comparison of training process for (a) Unified CGAN and
(b) FCGAN.

to converge at 1000 epochs, confirming this model is unstable390

during the training process.391

These confirm that the proposed architecture achieves392

faster model convergence than the state-of-the-art GAN393

architecture.394

B. VISUAL EVALUATION395

The objective of this evaluation techniques is to assess the396

quality of the generated synthetic data. It compares the accel-397

eration of real data samples with the acceleration of synthetic398

data samples to see how the generative models can fabricate399

the patterns of the real data. The samples of the real data400

and the synthetic data are selected randomly from the three401

types of the activities in this study: dynamic (walking), static402

(standing), and transition (stand-to-sit). The visual evaluation403

of the real sample data and fake sample data of FCGAN404

and Unified CGAN for walking, standing, and stand-to-sit405

activities are shown in Figure 3.406

In general, considering standing activity, the patterns of407

the synthetic signals of both FCGAN and Unified CGAN are408

verisimilar to the pattern of the real signals. In the case of 409

walking and stand-to-sit activities, the patterns of the syn- 410

thetic signals of the generative models are not similar to the 411

pattern of the real sample data. However, the Unified CGAN 412

manages to reconstruct the signal pattern of the different axes 413

of real data for each activity. 414

Although Unified CGAN able to generate synthetic data 415

that captures the underlying pattern of the real data, the 416

pattern is quite different from the real data. The Gaussian 417

input noise feed into the unified CGAN model only has a 418

minor effect in increasing synthetic data variations. 419

Nevertheless, the local evaluation also shows that FCGAN 420

able to generate signals that are more similar to the real 421

signals than the Unified CGAN in all types of activities, 422

and more precisely in dynamic and transition activities. This 423

confirms that the synthetic data produced by the FCGAN 424

more accurately represents the real data than Unified CGAN. 425

C. SIMILARITY MEASURE EVALUATION 426

Euclidean DistanceMeasure is a well-knownmethod used by 427

both past [49] and state-of-the-art studies [26] for resource- 428

limited devices like sensors to evaluate the similarity between 429

time series data for sensor-based activity recognition. This 430

is due to its low computational complexity and data storage 431

requirement while demonstrating the variation within each 432

class of generated samples. 433

The objective of this evaluation is to evaluate the variability 434

of the generated data by the proposed model. We, therefore, 435

use Euclidean Distance Measure to evaluate the performance 436

of the synthetic data generated by the proposed model. This 437

is conducted by comparing the similarity of the synthetic 438

data generated by the proposed model in this study with the 439

similarity of the synthetic data generated by the state-of-the- 440

art CGAN.We also compare the e similarity of synthetic data 441

of the comparative models with the real data. 442

This determines the similarity between the real and syn- 443

thetic data (RTS) as well as the similarity between the real 444

to real data (RTR) and synthetic to synthetic data (STS). 445

For each experiment, the degree of similarity between two 446

activity signals (2 seconds) is measured and recorded. The 447

signals are randomly selected, and each experiment was run 448

at least 10 times to avoid bias in the analysis of the evaluation. 449

The distance function to measure the similarity between a 450

(one data point of synthetic sample a) and b (one data point 451

of synthetic sample b) is given in (2). 452

DE (a, b) =
[∑n

i=1
(a− b)

]1/2
(2) 453

Table 5 shows the Euclidean Distance of the synthetic data 454

generated by FCGAN. The results show that the Euclidean 455

Distance between real to real (RTR) and real to synthetic 456

(RTS) are very similar in all the dynamic and transitional 457

activities. This is good indication as the gap between most 458

of the generated data and real data is small. The dissimilar- 459

ity in RTR and RTS for stationary activities is high com- 460

pared to other activities. This problem is also observed in 461
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FIGURE 3. Visual evaluation of walking, standing and stand-to-sit activities.

TABLE 5. FCGAN similarity measure using euclidean distance.

the state-of-the-art CGAN method for sensor-based activity462

recognition. The results also show that dissimilarity in STS463

for all activities are lower than the those in RTR and RTS.464

This confirms that there is a little variation in the resulting465

pattern among the synthetic data.466

Table 6 shows the Euclidean Distance of the synthetic467

data generated by Unified CGAN. Like the FCGAN, the468

Euclidean Distance between real to real (RTR) and real to469

synthetic (RTS) are very similar in all the dynamic and tran-470

sitional activities and the dissimilarity in RTR and RTS for471

stationary activities is high compared to other activities. The472

results also show that dissimilarity in STS for all activities are473

lower than the those in RTR and RTS. They are even lower474

than those in FCGAN. This proves that the Unified CGAN475

model suffer from a greater mode collapse than FCGAN.476

D. USABILITY EVALUATION 477

The third evaluation technique, usability evaluation, aims to 478

investigate the quality of the synthetic data generated by the 479

proposed architecture in improving the performance of activ- 480

ity recognition classification models. First, the synthetic data 481

generated by both FCGAN architecture and Unified GAN 482

is preprocessed to perform four experiments on it together 483

with the real data using the best-performing deep learning 484

classifiers by Jimale and Noor[48]. These experiments are 485

experiments on 70% real data and 30% synthetic data, exper- 486

iments on 50% real data and 50% synthetic data, experiments 487

on 30% real data and 70% synthetic data, and experiments on 488

100% synthetic data. The classification accuracy, measured 489

using (3), is shown in a form of average accuracy. To record 490

the average accuracy, each experiment was run at least 10 491

times. 492

TP+ TN
TP+ TN + FP+ FN

(3) 493

TP, TN, FP, and FN stand for true positive, true negative, 494

false positive, and false negative respectively. 495

Table 7 shows the overall classification performance of the 496

comparative models. As the table demonstrates, there is about 497

2.5%, 2.5%, 3.1%, and 4.4% recognition performance gain by 498

the proposed architecture in the overall experimental stages. 499

This confirms that Fully Connected CGAN generates better 500

synthetic samples than the Unified CGAN. The results also 501

show that the average accuracy of the classification models 502
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TABLE 6. Unified CGAN similarity measure using euclidean distance.

TABLE 7. Average classification performance using deep learning.

TABLE 8. Confusion matrix of unified CGAN for stage I.

drops whenever real data is hybrid with synthetic data from503

the generative models in both models. However, the accuracy504

drop of the Unified CGAN is 0.6% and 1.3% higher than505

the FCGAN when the ratio of the real and synthetic data is506

50%:50%, and 30%:70% respectively. This confirms that the507

proposed architecture generates more realistic synthetic data508

than the state-of-the-art architecture.509

Wealso show the confusionmatrix of the four experimental510

stages to better understand the performance of each class of511

human activities. The best classification performance of the512

overall experimental stages is achieved in stage I as shown in513

Table 8 and Table 9. All classes of activities performwell with514

quite low classification performance for class 7 (Lie-to-sit),515

class 6 (Lying down), and class 4 (Sit-to-stand). The results516

of the stage I also reveal that FCGAN outperforms Unified517

CGAN in all activities except for class 2 (Stand-to-sit) and518

class 4 (Sit-to-stand).519

As shown in Table 10 and Table 11, the recognition per-520

formance of all activity classes drops in stage II except for521

Unified CGAN’s class 3 (sitting) and class 7(lie-to-sit). Class522

0(walking) of the comparativemodels suffers the highest drop523

while class 7(lie-to-sit) of Unified CGAN enjoys the highest524

improvement. Nevertheless, the majority of FCGAN activity525

classes maintain to have higher True Positives than Unified526

CGAN.527

TABLE 9. Confusion matrix of FCGAN for stage I.

TABLE 10. Confusion matrix of unified CGAN for stage II.

TABLE 11. Confusion matrix of FCGAN for stage II.

TABLE 12. Confusion matrix of unified CGAN for stage III.

Likewise, the recognition performance of all activity 528

classes drops in stage III but without any improvements seen 529

in stage III (see Table 12 and Table 13). Class 5 (sit-to-lie), 530

class 7 (lie-to-sit), and class 0 (walking) suffers the most 531

drops of FCGAN respectively while class 6 (lying down), 532

class 5 (sit-to-lie), and class 0 (walking) scores the highest 533

drop of the unified CGAN respectively. 534

As shown in Table 14 and Table 15, the recognition per- 535

formance of all activity classes drops in the final stage of 536

experiments for the Unified CGAN without any performance 537

improvement of a single class. class 0 (walking), class 2 538

(stand-to-sit), class 3 (sitting) scores the worst drop in this 539
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TABLE 13. Confusion matrix of FCGAN for stage III.

TABLE 14. Confusion matrix of unified CGAN for stage IV.

TABLE 15. Confusion matrix of FCGAN for stage IV.

case. In FCGAN stage IV experiments, on the other hand,540

half of activity classes maintained the same performance as541

in stage III. A minor performance drop is seen in the other542

activity classes (class 0 (walking), class 1 (standing), class 3543

(sitting), and class 5 (sit-to-lie) respectively).544

VI. CONCLUSION545

This paper has proposed an enhanced GGAN architecture546

for sensor-based activity recognition that synthesizes a more547

natural transformation of human activity signals and achieves548

faster model learning convergence and training stability.549

In the proposed architecture, the generator and discriminator550

networks encompass deep fully connected and convolution551

layers, in contrast to state-of-the-art network architecture.552

We have conducted several experiments on sensory data col-553

lected from elderly data and showed that our proposed archi-554

tecture generates better samples and converges faster through555

visual and usability evaluation techniques. All our experi-556

mental stages were limited to supervised CGANs. However,557

the proposed method is significant enough to be combined558

with any other GAN configuration. Therefore, a possible559

extension of the proposed work is to study its effectiveness in560

unsupervised and semi-supervised GAN setups. In the future,561

the enhanced architecture will also be improved further to 562

produce more quality samples. In addition, other datasets for 563

sensory-based activity recognition will be experimented with 564

to show the robustness of the newly proposed network. 565

REFERENCES 566

[1] A. Wang, S. Zhao, C. Zheng, H. Chen, L. Liu, and G. Chen, ‘‘Hier- 567

HAR: Sensor-based data-driven hierarchical human activity recogni- 568

tion,’’ IEEE Sensors J., vol. 21, no. 3, pp. 3353–3365, Feb. 2021, doi: 569

10.1109/JSEN.2020.3023860. 570

[2] M. H. M. Noor, Z. Salcic, and K. I.-K. Wang, ‘‘Ontology-based sensor 571

fusion activity recognition,’’ J. Ambient Intell. Hum. Comput., vol. 11, 572

no. 8, pp. 3073–3087, Aug. 2020, doi: 10.1007/s12652-017-0668-0. 573

[3] G. Farias, S. Dormido-Canto, J. Vega, G. Rattá, H. Vargas, G. Hermosilla, 574

L. Alfaro, and A. Valencia, ‘‘Automatic feature extraction in large fusion 575

databases by using deep learning approach,’’ Fusion Eng. Des., vol. 112, 576

pp. 979–983, Nov. 2016, doi: 10.1016/j.fusengdes.2016.06.016. 577

[4] J. Wang, Y. Chen, S. Hao, X. Peng, and L. Hu, ‘‘Deep learning for sensor- 578

based activity recognition: A survey,’’ Pattern Recognit. Lett., vol. 119, 579

pp. 3–11, Mar. 2019, doi: 10.1016/j.patrec.2018.02.010. 580

[5] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi, and U. R. Alo, ‘‘Deep learning 581

algorithms for human activity recognition using mobile and wearable 582

sensor networks: State of the art and research challenges,’’ Expert Syst. 583

Appl., vol. 105, pp. 233–261, Sep. 2018, doi: 10.1016/j.eswa.2018.03.056. 584

[6] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy, 585

‘‘Deep convolutional neural networks on multichannel time series for 586

human activity recognition,’’ in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 587

Jan. 2015, pp. 3995–4001. 588

[7] M. Hasan and K. A. Roy-Chowdhury, ‘‘A continuous learning frame- 589

work for activity recognition using deep hybrid feature models,’’ IEEE 590

Trans. Multimedia, vol. 17, no. 11, pp. 1909–1922, Nov. 2015, doi: 591

10.1109/TMM.2015.2477242. 592

[8] Q. Yang, ‘‘Activity recognition: Linking low-level sensors to high- 593

level intelligence,’’ in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2009, 594

pp. 20–25. 595

[9] C. A. Ronao and S.-B. Cho, ‘‘Human activity recognition with smartphone 596

sensors using deep learning neural networks,’’ Expert Syst. Appl., vol. 59, 597

pp. 235–244, Oct. 2016, doi: 10.1016/j.eswa.2016.04.032. 598

[10] D. Shi, Y. Li, and B. Ding, ‘‘Unsupervised feature learning for human 599

activity recognition,’’ Guofang Keji Daxue Xuebao/J. Nat. Univ. Defence 600

Technol., vol. 37, no. 5, pp. 128–134, 2015, doi: 10.11887/j.cn.201505020. 601

[11] F. Shaheen, B. Verma, and M. Asafuddoula, ‘‘Impact of automatic 602

feature extraction in deep learning architecture,’’ in Proc. Int. Conf. 603

Digit. Image Comput., Techn. Appl. (DICTA), Nov. 2016, pp. 1–8, doi: 604

10.1109/DICTA.2016.7797053. 605

[12] L. Alawneh, T. Alsarhan, M. Al-Zinati, M. Al-Ayyoub, Y. Jararweh, and 606

H. Lu, ‘‘Enhancing human activity recognition using deep learning and 607

time series augmented data,’’ J. Ambient Intell. Hum. Comput., vol. 12, 608

no. 12, pp. 10565–10580, Dec. 2021, doi: 10.1007/s12652-020-02865-4. 609

[13] K. M. Rashid and J. Louis, ‘‘Times-series data augmentation and deep 610

learning for construction equipment activity recognition,’’ Adv. Eng. 611

Informat., vol. 42, Oct. 2019, Art. no. 100944, doi: 10.1016/j.aei.2019. 612

100944. 613

[14] S. Zhang and N. Alshurafa, ‘‘Deep generative cross-modal on-body 614

accelerometer data synthesis from videos,’’ in Proc. Adjunct Proc. 615

ACM Int. Joint Conf. Pervasive Ubiquitous Comput. Proc. ACM Int. 616

Symp. Wearable Comput., Sep. 2020, pp. 223–227, doi: 10.1145/3410530. 617

3414329. 618

[15] M. Kim and C. Y. Jeong, ‘‘Label-preserving data augmentation for mobile 619

sensor data,’’ Multidimensional Syst. Signal Process., vol. 32, no. 1, 620

pp. 115–129, Jan. 2021, doi: 10.1007/s11045-020-00731-2. 621

[16] S. N. Tran, T. D. Nguyen, T.-S. Ngo, X.-S. Vu, L. Hoang, Q. Zhang, 622

and M. Karunanithi, ‘‘Deep learning for multi-resident activity recogni- 623

tion in ambient sensing smart homes,’’ Artif. Intell. Rev., vol. 53, no. 3, 624

pp. 340–341, 2019, doi: 10.1007/s10462-019-09783-8. 625

[17] C. F. S. Leite and Y. Xiao, ‘‘Improving cross-subject activity recognition 626

via adversarial learning,’’ IEEE Access, vol. 8, pp. 90542–90554, 2020, 627

doi: 10.1109/ACCESS.2020.2993818. 628

[18] A. Antoniou, A. Storkey, and H. Edwards, ‘‘Data augmentation gen- 629

erative adversarial networks,’’ Nov. 2017, arXiv:1711.04340. Accessed: 630

Jun. 18, 2020. 631

VOLUME 10, 2022 100265

http://dx.doi.org/10.1109/JSEN.2020.3023860
http://dx.doi.org/10.1007/s12652-017-0668-0
http://dx.doi.org/10.1016/j.fusengdes.2016.06.016
http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1016/j.eswa.2018.03.056
http://dx.doi.org/10.1109/TMM.2015.2477242
http://dx.doi.org/10.1016/j.eswa.2016.04.032
http://dx.doi.org/10.11887/j.cn.201505020
http://dx.doi.org/10.1109/DICTA.2016.7797053
http://dx.doi.org/10.1007/s12652-020-02865-4
http://dx.doi.org/10.1016/j.aei.2019.100944
http://dx.doi.org/10.1016/j.aei.2019.100944
http://dx.doi.org/10.1016/j.aei.2019.100944
http://dx.doi.org/10.1145/3410530.3414329
http://dx.doi.org/10.1145/3410530.3414329
http://dx.doi.org/10.1145/3410530.3414329
http://dx.doi.org/10.1007/s11045-020-00731-2
http://dx.doi.org/10.1007/s10462-019-09783-8
http://dx.doi.org/10.1109/ACCESS.2020.2993818


A. O. Jimale, M. H. Mohd Noor: Fully Connected Generative Adversarial Network for Human Activity Recognition

[19] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, ‘‘Deep learning632

for sensor-based human activity recognition: Overview, challenges, and633

opportunities,’’ ACM Comput. Surv., vol. 54, no. 4, pp. 1–40, May 2022,634

doi: 10.1145/3447744.635

[20] T. DeVries and G. W. Taylor, ‘‘Dataset augmentation in feature space,’’ in636

Proc. 5th Int. Conf. Learn. Represent. (ICLR), 2019, pp. 1–12.637

[21] W.-N. Hsu, Y. Zhang, and J. Glass, ‘‘Unsupervised domain adaptation for638

robust speech recognition via variational autoencoder-based data augmen-639

tation,’’ in Proc. IEEE Autom. Speech Recognit. Understand. Workshop640

(ASRU), Dec. 2017, pp. 16–23, doi: 10.1109/ASRU.2017.8268911.641

[22] G. Boquet, J. Vicario, A. Morell, and J. Serrano, ‘‘Missing data in traffic642

estimation: A variational autoencoder imputation method,’’ in Proc. IEEE643

Int. Conf. Acoust., Speech Signal Process. (ICASSP), Barcelona, U.K.,644

May 2019, pp. 2882–2886.645

[23] H. Ko, J. Lee, J. Kim, J. Lee, and H. Shim, ‘‘Diversity regularized autoen-646

coders for text generation,’’ inProc. 35th Annu. ACMSymp. Appl. Comput.,647

Mar. 2020, pp. 883–891, doi: 10.1145/3341105.3373998.648

[24] S. Mesbah, J. Yang, R.-J. Sips, M. V. Torre, C. Lofi, A. Bozzon, and649

G.-J. Houben, ‘‘Training data augmentation for detecting adverse drug650

reactions in user-generated content,’’ in Proc. Conf. Empirical Meth-651

ods Natural Lang. Process. 9th Int. Joint Conf. Natural Lang. Process.652

(EMNLP-IJCNLP), 2020, pp. 2349–2359.653

[25] C. Shorten and T.M. Khoshgoftaar, ‘‘A survey on image data augmentation654

for deep learning,’’ J. Big Data, vol. 6, no. 1, pp. 1–48, Dec. 2019, doi:655

10.1186/s40537-019-0197-0.656

[26] M. H. Chan and M. H. M. Noor, ‘‘A unified generative model using gener-657

ative adversarial network for activity recognition,’’ J. Ambient Intell. Hum.658

Comput., vol. 12, no. 7, pp. 8119–8128, Jul. 2021, doi: 10.1007/s12652-659

020-02548-0.660

[27] X. Li, J. Luo, and R. Younes, ‘‘ActivityGAN: Generative adversarial661

networks for data augmentation in sensor-based human activity recogni-662

tion,’’ in Proc. Adjunct ACM Int. Joint Conf. Pervasive Ubiquitous Com-663

put., ACM Int. Symp. Wearable Comput., Sep. 2020, pp. 249–254, doi:664

10.1145/3410530.3414367.665

[28] M.Abdu-Aguye andW.Gomaa, ‘‘Robust human activity recognition based666

on deepmetric learning,’’ inProc. 16th Int. Conf. Informat. Control, Autom.667

Robot., 2019, pp. 656–663, doi: 10.5220/0007916806560663.668

[29] A. Bulling, U. Blanke, and B. Schiele, ‘‘A tutorial on human activity recog-669

nition using body-worn inertial sensors,’’ ACM Comput. Surv., vol. 46,670

no. 3, pp. 1–33, Jan. 2014, doi: 10.1145/2499621.671

[30] T.-C. Chiang, B. Bruno, R. Menicatti, C. T. Recchiuto, and A. Sgorbissa,672

‘‘Culture as a sensor? A novel perspective on human activity recogni-673

tion,’’ Int. J. Social Robot., vol. 11, no. 5, pp. 797–814, Dec. 2019, doi:674

10.1007/s12369-019-00590-3.675

[31] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, R. A. Peterson,676

H. Lu, X. Zheng, M. Musolesi, K. Fodor, and G.-S. Ahn, ‘‘The rise677

of people-centric sensing,’’ IEEE Internet Comput., vol. 12, no. 4,678

pp. 12–21, Jul./Aug. 2008. [Online]. Available: https://ieeexplore.ieee.org/679

stamp/stamp.jsp?arnumber=4557974680

[32] J.-H. Li, L. Tian, H. Wang, Y. An, K. Wang, and L. Yu, ‘‘Segmentation681

and recognition of basic and transitional activities for continuous phys-682

ical human activity,’’ IEEE Access, vol. 7, pp. 42565–42576, 2019, doi:683

10.1109/ACCESS.2019.2905575.684

[33] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, ‘‘Wireless sensing685

for human activity: A survey,’’ IEEE Commun. Surveys Tuts., vol. 22,686

no. 3, pp. 1629–1645, 3rd Quart., 2020, doi: 10.1109/COMST.2019.687

2934489.688

[34] D. Cook, K. D. F. Feuz, and N. C. Krishnan, ‘‘Transfer learning for activity689

recognition: A survey diane,’’ Bone, vol. 23, no. 1, pp. 1–7, 2008, doi:690

10.1038/jid.2014.371.691

[35] L. Chen, J. Hoey, C. D.Nugent, D. J. Cook, and Z. Yu, ‘‘Sensor-based activ-692

ity recognition,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 42,693

no. 6, pp. 790–808, Nov. 2012, doi: 10.1109/TSMCC.2012.2198883.694

[36] S. Ali and M. Shah, ‘‘Human action recognition in videos using695

kinematic features and multiple instance learning,’’ IEEE Trans. Pat-696

tern Anal. Mach. Intell., vol. 32, no. 2, pp. 288–303, Feb. 2010, doi:697

10.1109/TPAMI.2008.284.698

[37] Z. Hussain, M. Sheng, and W. E. Zhang, ‘‘Different approaches for human699

activity recognition: A survey,’’ 2019, arXiv:1906.05074.700

[38] S. R. Ramamurthy and N. Roy, ‘‘Recent trends in machine learning701

for human activity recognition—A survey,’’ Wiley Interdiscipl. Rev.,702

Data Mining Knowl. Discovery, vol. 8, no. 4, pp. 1–11, Jul. 2018, doi:703

10.1002/widm.1254.704

[39] E. Zdravevski, P. Lameski, V. Trajkovik, A. Kulakov, I. Chorbev, 705

R. Goleva, N. Pombo, and N. Garcia, ‘‘Improving activity recogni- 706

tion accuracy in ambient-assisted living systems by automated fea- 707

ture engineering,’’ IEEE Access, vol. 5, pp. 5262–5280, 2017, doi: 708

10.1109/ACCESS.2017.2684913. 709

[40] H. Ono and S. Suzuki, ‘‘Data augmentation for gross motor-activity recog- 710

nition using DCGAN,’’ in Proc. IEEE/SICE Int. Symp. Syst. Integr. (SII), 711

Jan. 2020, pp. 440–443, doi: 10.1109/SII46433.2020.9026252. 712

[41] B. Almaslukh, J. Al Muhtadi, and A. M. Artoli, ‘‘A robust convolutional 713

neural network for online smartphone-based human activity recognition,’’ 714

J. Intell. Fuzzy Syst., vol. 35, no. 2, pp. 1609–1620, Aug. 2018, doi: 715

10.3233/JIFS-169699. 716

[42] S. Mahdizadehaghdam, A. Panahi, and H. Krim, ‘‘Generative adversarial 717

nets,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), 718

Oct. 2014, pp. 3063–3071, doi: 10.1109/ICCVW.2019.00369. 719

[43] C. Xiao, D. Han, Y. Ma, and Z. Qin, ‘‘CsiGAN: Robust chan- 720

nel state information-based activity recognition with GANs,’’ IEEE 721

Internet Things J., vol. 6, no. 6, pp. 10191–10204, Dec. 2019, doi: 722

10.1109/JIOT.2019.2936580. 723

[44] S. Palipana, D. Rojas, P. Agrawal, andD. Pesch, ‘‘FallDeFi: Ubiquitous fall 724

detection using commodity Wi-Fi devices,’’ Proc. ACM Interact., Mobile, 725

Wearable Ubiquitous Technol., vol. 1, no. 4, pp. 1–25, Dec. 2018, doi: 726

10.1145/3161183. 727

[45] J. Wang, Y. Chen, Y. Gu, Y. Xiao, and H. Pan, ‘‘SensoryGANs: An 728

effective generative adversarial framework for sensor-based human activity 729

recognition,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2018, 730

pp. 1–8, doi: 10.1109/IJCNN.2018.8489106. 731

[46] J. Shi, D. Zuo, and Z. Zhang, ‘‘A GAN-based data augmentation method 732

for human activity recognition via the caching ability,’’ Internet Technol. 733

Lett., vol. 4, no. 5, pp. 4–9, Sep. 2021, doi: 10.1002/itl2.257. 734

[47] S. Barua, S. M. Erfani, and J. Bailey, ‘‘FCC-GAN: A fully connected and 735

convolutional net architecture for GANs,’’ 2019, arXiv:1905.02417. 736

[48] A. O. Jimale andM.H.M. Noor, ‘‘Subject variability in sensor-based activ- 737

ity recognition,’’ J. Ambient Intell. Hum. Comput., pp. 1–14, Sep. 2021, 738

doi: 10.1007/s12652-021-03465-6. 739

[49] L. Liu, Y. Peng, M. Liu, and Z. Huang, ‘‘Sensor-based human activ- 740

ity recognition system with a multilayered model using time series 741

shapelets,’’ Knowl.-Based Syst., vol. 90, pp. 138–152, Dec. 2015, doi: 742

10.1016/j.knosys.2015.09.024. 743

ALI OLOW JIMALE (Member, IEEE) is cur- 744

rently pursuing the Ph.D. degree with the 745

School of Computer Sciences, USM, Malaysia. 746

He is currently the Director of the Center for 747

Research and Development and a Lecturer with 748

the Faculty of Computing, SIMAD University. 749

He is also a Teaching Assistant and a Gradu- 750

ate Research Assistant with the School of Com- 751

puter Sciences, USM. His research interests 752

includemachine learning, activity recognition, and 753

parallel computing. 754

MOHD HALIM MOHD NOOR is an Academian 755

with the School of Computer Sciences, Universiti 756

Sains Malaysia (USM). He was a Senior Lec- 757

turer in computer engineering at the Universiti 758

Teknologi MARA, Pulau Pinang. Currently, he is 759

focusing on problems in human motion analysis. 760

His research interests include machine learning 761

and deep learning for computer vision and perva- 762

sive computing. 763

764

100266 VOLUME 10, 2022

http://dx.doi.org/10.1145/3447744
http://dx.doi.org/10.1109/ASRU.2017.8268911
http://dx.doi.org/10.1145/3341105.3373998
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1007/s12652-020-02548-0
http://dx.doi.org/10.1007/s12652-020-02548-0
http://dx.doi.org/10.1007/s12652-020-02548-0
http://dx.doi.org/10.1145/3410530.3414367
http://dx.doi.org/10.5220/0007916806560663
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1007/s12369-019-00590-3
http://dx.doi.org/10.1109/ACCESS.2019.2905575
http://dx.doi.org/10.1109/COMST.2019.2934489
http://dx.doi.org/10.1109/COMST.2019.2934489
http://dx.doi.org/10.1109/COMST.2019.2934489
http://dx.doi.org/10.1038/jid.2014.371
http://dx.doi.org/10.1109/TSMCC.2012.2198883
http://dx.doi.org/10.1109/TPAMI.2008.284
http://dx.doi.org/10.1002/widm.1254
http://dx.doi.org/10.1109/ACCESS.2017.2684913
http://dx.doi.org/10.1109/SII46433.2020.9026252
http://dx.doi.org/10.3233/JIFS-169699
http://dx.doi.org/10.1109/ICCVW.2019.00369
http://dx.doi.org/10.1109/JIOT.2019.2936580
http://dx.doi.org/10.1145/3161183
http://dx.doi.org/10.1109/IJCNN.2018.8489106
http://dx.doi.org/10.1002/itl2.257
http://dx.doi.org/10.1007/s12652-021-03465-6
http://dx.doi.org/10.1016/j.knosys.2015.09.024

