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ABSTRACT Conditional Generative Adversarial Networks (CGAN) have shown great promise in generating
synthetic data for sensor-based activity recognition. However, one key issue concerning existing CGAN
is the design of the network architecture that affects sample quality. This study proposes an effective
CGAN architecture that synthesizes higher quality samples than state-of-the-art CGAN architectures. This
is achieved by combining convolutional layers with multiple fully connected networks in the generator’s
input and discriminator’s output of the CGAN. We show the effectiveness of the proposed approach using
elderly data for sensor-based activity recognition. Visual evaluation, similarity measure, and usability
evaluation are used to assess the quality of generated samples by the proposed approach and validate its
performance in activity recognition. In comparison to the state-of-the-art CGAN, the visual evaluation and
similarity measure demonstrate that the proposed models’ synthetic data more accurately represents actual
data and creates more variations in each synthetic data than the state-of-the-art approach respectively. The
experimental stages of the usability evaluation, on the other hand, show a performance gain of 2.5%, 2.5%,
3.1%, and 4.4% over the state-of-the-art CGAN when using synthetic samples by the proposed architecture.

INDEX TERMS Activity recognition, deep learning, generative adversarial network.

I. INTRODUCTION

Pervasive computing and sensing technologies have
advanced dramatically, enabling automatic analysis and
recognition of human behavior and activities [1]. One of
the most important applications of this topic is Sensor-
based Activity Recognition, a research field that recognizes
human activities by analyzing motion data collected via fixed
or wearable sensors [2]. In the first, sensing technologies
are either tagged to a certain location and human activity
inference is based on the user’s interaction with the tagged
object, or they are deployed in an environment where no
tag or device is required. Passive infrared sensors, pressure
sensors, and contact switches are examples of fixed sensors.
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In the second, the sensing technologies are worn by users
or attached to portable devices such as mobile phones and
smartwatches. Accelerometers and gyroscopes are examples
of wearable sensors. Wearable sensors are ubiquitous, unob-
trusive, cheaper, less harmful, easier to deploy and use, and
capable to support real-time activity recognition compared to
other sensing modalities.

Because of these advantages, several machine learning and
deep learning methods have been explored to classify and
recognize human activities using wearable sensors such as
accelerometers, and gyroscopes. Machine learning methods
for sensor-based activity recognition use hand-crafted fea-
tures that are manually extracted with the help of human
domain experts [3], [4]. However, expert-driven feature
extraction methods have issues [5]. First of all, domain
experts can only learn very limited features [6] related to
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some statistical information including mean, frequency, vari-
ance, and amplitude which cannot fully support the dynamic
nature of today’s ubiquitous and seamless collection of wear-
able and mobile senor streams [7]. These shallow features
also fail to support modeling complex activities [8] and
involve very time-consuming feature selections [9]. Second,
manually engineered features are error-prone which may
result in the loss of important information for activity recog-
nition [10]. This affects the performance and accuracy of
the human activity recognition system [5]. Third, the cur-
rent manual feature extraction is application-dependent or
problem-specific that cannot be transferred to another activity
with similar patterns. Finally, there is no universal rule for
selecting appropriate human activity features.

To overcome the limitation of feature engineering, deep
learning methods have been widely adopted for sensor-based
activity recognition to automate feature extraction and extract
higher-level representation to recognize human activities [4],
[11]. Although deep learning methods have been shown to
be effective, the methods require a huge amount of training
data which is challenging to collect in sensor-based activity
recognition due to the cost and the time required to collect
the training data as well as battery and storage capacity con-
straints of sensing technologies. For this reason, researchers
address the scarcity of training data in sensor-based activity
recognition through data augmentation. Several studies used
data augmentation to increase the size of sensory data [12],
[13], [14], [15], [16]. There are two types of sensor data aug-
mentation for activity recognition: basic data augmentation
and deep learning data augmentation methods. Basic data
augmentation techniques use conventional algorithms to per-
form different data augmentation techniques that add noise to
the sensor readings, increase/decrease the magnitude of the
sensor readings, or flip the sign of the original sensor data
[17]. One drawback of the basic data augmentation method
is generating only limited samples that are not suitable for
training deep learning models [18].

Recently, deep generative models have shown impres-
sive results in generating massive samples for sensor-based
human activity recognition [19]. This is to say that applying
data augmentation on encoded inputs rather than raw sen-
sory data generates more plausible synthetic data due to the
manifold unfolding in feature space [20]. Two techniques can
be used to apply data augmentation using deep generative
models. These two techniques are Variational Autoencoders
(VAEs) and Generative Adversarial Networks (GANSs).

VAEs are generative models that learn the low-dimensional
representation of sensor data points. It consists of two net-
works (encoder, decoder) and a loss function. The encoder
converts input data to small latent (hidden) space while the
decoder maps latent space input into original input. The loss
function is the negative log-likelihood with a regularizer to
penalize the decoder mistakes [21]. VAEs data augmenta-
tion techniques are applied in several areas including speech
recognition [21], traffic estimation [22], text generation [23],
adverse drug reactions detection [24], and others. However,
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VAE is not well known in synthetic sensor data generation
for human activity recognition. This is because synthetic data
generated by VAEs tend to be more blurred.

GANs generate more realistic synthetic data than VAEs
in the sensor-based activity recognition field [25]. Due to
its capacity to create verisimilar synthetic examples, GAN
has become the most prominent data generative model for
overcoming the lack of data challenges for sensor-based
activity recognition. One of the recent achievements of GAN
network architectures for sensor-based activity recognition
is developing the Unified Conditional GAN (CGAN) for
synthesizing more than one human activity data in a single
training process [26], [27]. However, state-of-the-art CGAN
eliminates the use of fully connected layers in their model’s
generator and discriminator. This architectural choice sug-
gested by [14] is also adopted by the majority of other existing
GANSs without investigating its effect on sample quality.

The main objective of this study is to develop an improved
CGAN architecture that combines convolutional layers with
multiple fully connected networks in the input and output
layers of the generator and discriminator to generate more
realistic synthetic activity signals.

This study’s contributions are summarized as follows:

a. To our best knowledge, we are the first to propose an
enhanced CGAN architecture that combines convolu-
tional layers with multiple fully connected networks in
the input and output layers of the generator and discrim-
inator respectively to generate more quality synthetic
samples for sensor-based activity recognition.

b. We conduct comprehensive experiments to compare
the quality of the generated samples by the pro-
posed approach with the state-of-the-art approach using
visual and similarity measure evaluation techniques.
The visual evaluation and similarity measure tech-
niques demonstrate that the proposed models’ synthetic
data more accurately captures the real data and creates
more variations than the state-of-the-art approach.

c. The performance of the proposed approach is trained on
elderly datasets for sensor-based activity recognition.
Using synthetic samples, the proposed architecture out-
performs the state-of-the-art CGAN by 2.5%, 2.5%,
3.1%, and 4.4%.

The rest of this paper is organized as follows. Section 2
reviews the related work, Section 3 details the proposed
architecture, Section 4 explains the experimental setup, the
performance of the proposed architecture is evaluated in
section 5, and Section 6 concludes the study.

Il. RELATED WORK

Activity Recognition refers to the process of identifying
human movements and actions based on motion data col-
lected through digital cameras and sensor devices [28], [29],
[30], [31]. Human Activities recognized by activity recogni-
tion systems can be classified into two main categories: tran-
sitional and basic human activities [32]. Transitional physical
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activities are simple events with a small duration in the
order of seconds. These activities are further divided into
two subcategories: gesture and transition. Gesture refers to
the visual movements of a part of the human body such as
the arm, hand, head, and finger to communicate nonverbally
[33], while transitions are the activities that connect two dif-
ferent human activities such as lie-to-sit, lie-to-stand, stand-
to- sit, stand-to-lie, sit-to-lie, and sit-to-stand [32]. On the
other hand, basic activities are human activities with a long
duration in the order of minutes. These activities can be
characterized as either dynamic activity or static activity.
Dynamic activities are continuous activities with periodicity
(i.e., walking, running), while static activities are activities
with static posters (i.e., sitting, standing). Existing activity
recognition approaches can be divided into two categories:
vision-based activity recognition and sensor-based activity
recognition [34], [35]. The vision-based activity recognition
approach analyzes digital images and/or video sequences
with human motions from cameras to recognize human activ-
ities [19]. Initially, this approach has been a hot scientific
topic. Many researchers investigated human activity recogni-
tion from images and videos [29]. This is due to its wide appli-
cations in sports, surveillance systems, health care, smart
rooms, video retrieval, and human-computer interfaces [36].
Later, the sensor-based activity recognition approach became
a popular and fast-growing topic [37]. This is due to tech-
nological advancements and low prices of sensor devices as
well as the issues of the vision-based approach including
privacy, space, cost, angle, obstruction, and light dependency
issues [12], [38].

Sensor-based activity recognition has achieved good
progress by utilizing various deep learning classifiers such
as Convolutional Neural Network, Restricted Boltzmann
Machine Restricted, Deep Autoencoder, Sparse coding, and
Recurrent neural network [4]. This is due to the automatic
feature extraction that deep learning methods employ to
automatically generate human activity features and select
the best ones [39]. The deep learning models are trained
with huge amounts of labeled data which is challenging in
sensor-based activity recognition for various reasons. First,
data collection and dataset creation with hundreds of subjects
with different age groups are expensive and time-consuming
with great effort requirements [40]. Collecting high-quality
data requires a huge number of participants, logistics, costs,
experimenters, equipment, sensor modalities, and long-term
recordings. Sensors also have storage and battery limitations.
Data annotation is another issue. Manual annotation of the
collected data with activity labels is expensive, physically
laborious, and error-prone. Annotating these activities may
also dictate requiring domain experts for annotation purposes.
One of the best methods for overcoming limited datasets
in activity recognition using deep learning is data augmen-
tation [41]. GAN, originally proposed by [42], has domi-
nated data augmentation methods for sensor-based activity
recognition using deep learning as it generates more realistic
synthetic data than other data augmentation methods [25].
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It contains two components built by multilayer perceptron:
generator and discriminator. The generator takes a noise vec-
tor, which is randomly generated via a-priori distribution,
as an input to generate fake samples. It maximizes the proba-
bility of the fake samples being classified as real. The real and
fake samples are then fed into the discriminator to estimate
the probability that the fake data is drawn using the real data
[43]. Equation (1) contains the overall objective function of
GAN where G is the generator, D is the discriminator, z is an
a-priori distribution noise, pz(z) is fake data distribution, and
pdata(x) is real data distribution.

ming maxp = Ex~pdata(x) [log (D (X))] + EZ"‘pZ(Z)
+[log (1 = D (G(2)))] (H

GAN:Ss for sensor-based activity recognition fall into two
categories: semi-supervised and supervised GANs. Semi-
supervised GANs were mainly used to overcome left-out
user’s activity recognition, which may have declined the
recognition performance of the learning model [44]. Any
human subject whose data is not fed to the deep learning
model for training is a left-out user. A limitation of semi-
supervised GANSs is that they require the use of test data
during the training phase. In addition to that, a different model
must be trained for a single or group of target subjects [43].
However, the focus of this study is to improve sample qual-
ity of state-of-the-art GANs that generate synthetic data for
sensor-based activity recognition in a single model training
process without using any data from the test set during the
training. This could be achieved using supervised GANS.
The first supervised GAN for sensor-based activity recogni-
tion using deep learning was proposed by Wang et al. [45].
They developed a GAN framework called SensoryGAN that
contains a generator and a discriminator. First, their method
takes random noise and real sensor data as input. Then, the
generator and the discriminator play a mini-max game to
generate synthetic sensor data for three human activities:
stay, walk, and jog. They also applied three visualization
techniques: local, global, and memory independent to satisfy
the GANs community from computer vision while evaluating
the quality of generated data.

Nevertheless, the limitation of this study is that it can
generate data for a single class of activity but not accom-
modate various classes of different human activities in a
single training process. This is time-consuming and makes
the learning process long. Shi et al. [46] also implemented a
DCGAN-based data augmentation method called HARAug-
GAN to enlarge the activity scope of the SensoryGan method.
Although they consider more than three activities in their
method, their method is not unified as they generate the
sensory data for each activity separately. Hong et al. [26]
solved this issue by developing a unified model for gener-
ating synthetic data of 5 human activities (standing, laying
down, walking, cycling, and jogging) in a single training
process. This is achieved by adapting CGAN architecture that
adds a conditional factor with class label information to the
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TABLE 1. Architecture of the unified CGAN’s generator [26].

Layer (type) Configuration Details Output Shape
D Filtc;rs = 16, Kernel Size =7,
Convolution Activation = ReLU, Input Shape = 100, 16
112,4
Dropout Rate = 0.4 100, 16
1D _ Filt?r :'32, Kernel Size =5, 100. 32
Convolution Activation = ReLU ?
Dropout Rate = 0.4 100, 32
(ljlznvolution ]/‘;lli?\te;igi’f ;?SIIJSIR - 100, 64
Dropout Rate = 0.4 100, 64
1Clznvolution ]/:klittf\rz;lérzli Ili:?lejl srel 100, 128
Dropout Rate = 0.4 100, 128
LSTM Units = 200, Activation = Tanh 100, 200
LSTM Units = 200, Activation = Tanh 100, 200
Dense Units = 150, Activation = ReLU 100, 150
Dense Units = 3, Activation = Linear 100, 6

TABLE 2. Architecture of unified CGAN'S discriminator [26].

Layer (type) Configuration Output Shape
1D Filters = 64, Kernel Size =7, 100, 64
Convolution Activation = ReLU, Input Shape =

100,6
Dropout Rate=0.4 100, 64
1D Filters = 128, Kernel Size = 3, 100, 128
Convolution Activation = Leaky ReLU
Dropout Rate =0.4 100, 128
Max Pooling Pool Size=2 50, 128
Flatten - 6400
Dense Units = 100, Activation = ReLU 100
Dense Units = 1, Activation = Sigmoid 1

generator and discriminator models. The conditional factor
¢ here is the label of the human activities and real data input
is sensor-based human activity signals. The network architec-
ture of this model restricts the use of fully connected networks
in the input layer of its generator, G(z|c), and the output
layer of its discriminator, D(x|c). Four 1-D CNN layers with
rectified linear unit (ReLU) activation function followed by
dropout, two LSTM layers with Tanh activation and two fully
connected layers with rectified linear unit (ReLU) activation
function make up its generator while two 1-D CNN layers
with dropout each and two fully connected layers with a
rectified linear unit (ReLU) and sigmoid activation functions
make up its discriminator. Table 1 and Table 2 show the
architecture of the Generator and Discriminator respectively.

Li et al. [27] have also proposed a unified GAN model
named ActivityGan for generating sensor-based activity
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recognition. However, their model eliminates the use of fully
connected from the GAN network. Its network architecture
consists of a ID-convolution chain and 1D- transposed convo-
lution chain while CNN architecture is adopted to build their
discriminator.

Literature confirms that state-of-the-art Unified GAN net-
works for generating sensor-based activity recognition data
have adopted models that eliminate or restrict the use of fully
connected layers from the GAN network architecture. This
hurts the output quality of the GAN network [47]. This study
proposes an enhanced CGAN architecture that combines con-
volutional layers with multiple fully connected networks in
the input and output layers of the generator and discriminator
respectively to generate better synthetic activity signals as
explained in the next section.

1Ill. PROPOSED MIODEL

The proposed method in this study, the Fully Connected
CGAN (FCGAN) Model, enhances the Unified CGAN model
architecture by Hong et al. [26] to improve sample gener-
ation quality. Unlike the state-of-the-art Unified GANSs, the
Fully Connected CGAN converts the low-dimensional fake
input of the generator to a high-dimensional space of the
activity signals. This is achieved by employing three fully
connected layers as embedding layers for the first task of the
generator, followed by convolutional and LSTM layers for
the second and third task respectively. The fully connected
layers employed as the first task of the generator learn the
relationship between noise vectors and human activity fea-
tures by mapping noise vectors to activity features of the
human activities. This allows the model to generate subtle
variations in different spatial zones, which helps the generator
to synthesizing more realistic samples. Table 3 shows the
generator’s architecture of the fully connected CGAN.

This study also enhances the discriminator’s network archi-
tecture of the base model by adding three fully connected
networks to the discriminator’s network. This provides the
functionality to convert the discriminator’s input to a lower-
dimensional space before classification, preventing the dis-
criminator’s loss from becoming too low. In this regard, the
generator learns faster, leading to a faster model convergence.
Table 4 shows the discriminator’s architecture of the fully
connected CGAN.

The used fully connected networks in the FCGAN gener-
ator’s and discriminator’s architecture comprise three fully
connected layers with almost similar configurations to the
base model as a recent study show impressive results in
having three fully connected layers with convolution layers
in GANs generator and discriminator architecture [47].

IV. EXPERIMENTAL SETUP

In this research, a sensory dataset collected from elderly sub-
jects using an accelerometer and gyroscope is adopted to train
the generative and classification models in this study. The
subjects of the dataset were asked to perform walking, stand-
ing, sitting, lying down, sit-to-lie, sit-to-stand, lie-to-sit, and
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TABLE 3. Architecture of the FCGAN’S generator.

Layer (type)  Configuration Details Output Shape
Input Latent Dim = 100, Number of 108
Classes = 8
Dense Units = 64, Activation = ReLU 64
Dense Units = 512, Activation = ReLU 512
Dense Egﬁt{sj =3600, Activation = 3600
Reshape 100, 36
1D ) Filte_:rs = 16, Kernel Size =7, 100. 16
Convolution Activation = ReLU ’
Dropout Rate =04 100, 16
1D . Filte':r :'32, Kernel Size =5, 100. 32
Convolution Activation = ReLU ’
Dropout Rate=0.4 100, 32
1D . Filte':r :'64, Kernel Size = 3, 100. 64
Convolution Activation = ReLU ’
Dropout Rate =0.4 100, 64
(lllgnvolution I/:\lif\r/a_tl(l)ii Ié:anSI S 100, 128
Dropout Rate =0.4 100, 128
LSTM Units = 200, Activation = Tanh 100, 200
LSTM Units = 200, Activation = Tanh 100, 200
Dense Units = 150, Activation = ReLU 100, 150
Dense Units = 3, Activation = Linear 100, 6
TABLE 4. Architecture of the FCGAN’S discriminator.
Layer (type) Configuration Output Shape
D Filt§rs = 64, Kernel Size=7,
Convolution Activation = ReLU, Input 100, 64
Shape = 100,6
Dropout Rate=0.4 100, 64
1D ) Filt;rs = 128, Kernel Size = 3, 100. 128
Convolution Activation = Leaky ReLU ’
Dropout Rate=0.4 100, 128
Flatten - 12800
Dense genIlltIs‘T =512, Activation = 512
Dense Egllj; = 64, Activation = 64
Dense LR]:EIS_] =16, Activation = 16
Dense Units = 1, Activation = 1

Sigmoid

stand-to-sit activities in their preferred style and pace. The
elderly dataset was sampled in fixed-width sliding windows
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of 2 seconds and 50% overlap (100 readings/window). A full
description of the used dataset can be found in section 4.1.1
of [48].

Preprocessed data is used to train the FCGAN and compare
it with the state-of-the-art Unified CGAN by Hong et al. [26].
Both models learn the latent patterns of human activities in a
single training process. The models’ training was continued
for 1000 epochs with a batch size of 60. The experiments
were implemented in Google Colaboratory (also known as
Colab)’s Jupyter notebook environment using Keras python
library with Tensorflow as the backend. Google Colab is
chosen due to its runtime configurations for deep learning
applications and free access to a robust GPU.

V. MODEL EVALUATION

This study uses four techniques to evaluate the performance
of the proposed approach: training evaluation, visual evalua-
tion, similarity measure evaluation, and usability evaluation.

A. TRAINING EVALUATION

GAN fully converges when the discriminator cannot dif-
ferentiate real examples from fake ones and is considered
stable when the generator’s active models did not have a
high loss value after model convergence. The stability and
the speed of GAN full convergence are highly associated
with the loss pattern of the generator and discriminator as
it dictates the number of epochs required by the models to
fully converge. The objective of the first evaluation technique,
training evaluation, is to provide more insights into how far
the proposed architecture is more stable and achieves faster
model convergence. It visualizes the proposed architecture,
FCGAN, model convergence, and stability and compares it
with the state-of-the-art CGAN unified CGAN architecture.
This is performed by extracting the discriminator’s loss,
and generator’s loss information during the models’ training
process.

Figure 1 compares the discriminator’s loss of the Unified
CGAN with the discriminator’s loss of the FCGAN. It shows
that the FCGAN discriminator has higher loss values than the
Unified CGAN discriminator across all epochs.

Discriminator’s higher loss has the potential to provide
larger gradients to help the generator learn the data dis-
tribution faster as shown in Figure 2 which visualizes the
generator’s loss of the compared models. As can be observed,
the FCGAN generator scores lower loss values compared to
the Unified CGAN. This leads to a faster model convergence
and achieves better learning stability.

The experiments show that the generator of the Unified
CGAN starts to converge at epoch 874 while the generator
of the Fully Connected CGAN starts to converge at epoch
235. This is considered the first stage of full convergence of
both models. This study uses the generated data in this period
for investigation and analysis. The experiments also confirm
that the FCGAN, unlike the Unified CGAN, remains more
stable after its first stage till its convergence at the end of
training epochs. On the other hand, the Unified CGAN fails
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FIGURE 2. Comparison of training process for (a) Unified CGAN and
(b) FCGAN.

to converge at 1000 epochs, confirming this model is unstable
during the training process.

These confirm that the proposed architecture achieves
faster model convergence than the state-of-the-art GAN
architecture.

B. VISUAL EVALUATION
The objective of this evaluation techniques is to assess the
quality of the generated synthetic data. It compares the accel-
eration of real data samples with the acceleration of synthetic
data samples to see how the generative models can fabricate
the patterns of the real data. The samples of the real data
and the synthetic data are selected randomly from the three
types of the activities in this study: dynamic (walking), static
(standing), and transition (stand-to-sit). The visual evaluation
of the real sample data and fake sample data of FCGAN
and Unified CGAN for walking, standing, and stand-to-sit
activities are shown in Figure 3.

In general, considering standing activity, the patterns of
the synthetic signals of both FCGAN and Unified CGAN are
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verisimilar to the pattern of the real signals. In the case of
walking and stand-to-sit activities, the patterns of the syn-
thetic signals of the generative models are not similar to the
pattern of the real sample data. However, the Unified CGAN
manages to reconstruct the signal pattern of the different axes
of real data for each activity.

Although Unified CGAN able to generate synthetic data
that captures the underlying pattern of the real data, the
pattern is quite different from the real data. The Gaussian
input noise feed into the unified CGAN model only has a
minor effect in increasing synthetic data variations.

Nevertheless, the local evaluation also shows that FCGAN
able to generate signals that are more similar to the real
signals than the Unified CGAN in all types of activities,
and more precisely in dynamic and transition activities. This
confirms that the synthetic data produced by the FCGAN
more accurately represents the real data than Unified CGAN.

C. SIMILARITY MEASURE EVALUATION

Euclidean Distance Measure is a well-known method used by
both past [49] and state-of-the-art studies [26] for resource-
limited devices like sensors to evaluate the similarity between
time series data for sensor-based activity recognition. This
is due to its low computational complexity and data storage
requirement while demonstrating the variation within each
class of generated samples.

The objective of this evaluation is to evaluate the variability
of the generated data by the proposed model. We, therefore,
use Euclidean Distance Measure to evaluate the performance
of the synthetic data generated by the proposed model. This
is conducted by comparing the similarity of the synthetic
data generated by the proposed model in this study with the
similarity of the synthetic data generated by the state-of-the-
art CGAN. We also compare the e similarity of synthetic data
of the comparative models with the real data.

This determines the similarity between the real and syn-
thetic data (RTS) as well as the similarity between the real
to real data (RTR) and synthetic to synthetic data (STS).
For each experiment, the degree of similarity between two
activity signals (2 seconds) is measured and recorded. The
signals are randomly selected, and each experiment was run
at least 10 times to avoid bias in the analysis of the evaluation.
The distance function to measure the similarity between a
(one data point of synthetic sample a) and b (one data point
of synthetic sample b) is given in (2).

Dpaby=[Y" @-n]" )

Table 5 shows the Euclidean Distance of the synthetic data
generated by FCGAN. The results show that the Euclidean
Distance between real to real (RTR) and real to synthetic
(RTS) are very similar in all the dynamic and transitional
activities. This is good indication as the gap between most
of the generated data and real data is small. The dissimilar-
ity in RTR and RTS for stationary activities is high com-
pared to other activities. This problem is also observed in
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FIGURE 3. Visual evaluation of walking, standing and stand-to-sit activities.

TABLE 5. FCGAN similarity measure using euclidean distance.

Activity RTR RTS STS
Walking 0.54 0.60 0.31
Standing 0.39 0.61 0.48
Stand-to-sit 0.68 0.71 0.42
Sitting 0.37 0.70 0.47
Sit-to-stand 0.66 0.73 0.63
Sit-to-lie 0.69 0.82 0.56
Lying down 0.48 0.71 0.34
Lie-to-sit 0.77 0.80 0.55

the state-of-the-art CGAN method for sensor-based activity
recognition. The results also show that dissimilarity in STS
for all activities are lower than the those in RTR and RTS.
This confirms that there is a little variation in the resulting
pattern among the synthetic data.

Table 6 shows the Euclidean Distance of the synthetic
data generated by Unified CGAN. Like the FCGAN, the
Euclidean Distance between real to real (RTR) and real to
synthetic (RTS) are very similar in all the dynamic and tran-
sitional activities and the dissimilarity in RTR and RTS for
stationary activities is high compared to other activities. The
results also show that dissimilarity in STS for all activities are
lower than the those in RTR and RTS. They are even lower
than those in FCGAN. This proves that the Unified CGAN
model suffer from a greater mode collapse than FCGAN.
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D. USABILITY EVALUATION

The third evaluation technique, usability evaluation, aims to
investigate the quality of the synthetic data generated by the
proposed architecture in improving the performance of activ-
ity recognition classification models. First, the synthetic data
generated by both FCGAN architecture and Unified GAN
is preprocessed to perform four experiments on it together
with the real data using the best-performing deep learning
classifiers by Jimale and Noor[48]. These experiments are
experiments on 70% real data and 30% synthetic data, exper-
iments on 50% real data and 50% synthetic data, experiments
on 30% real data and 70% synthetic data, and experiments on
100% synthetic data. The classification accuracy, measured
using (3), is shown in a form of average accuracy. To record
the average accuracy, each experiment was run at least 10
times.

TP + TN
TP+ TN + FP + FN

TP, TN, FP, and FN stand for true positive, true negative,
false positive, and false negative respectively.

Table 7 shows the overall classification performance of the
comparative models. As the table demonstrates, there is about
2.5%,2.5%, 3.1%, and 4.4% recognition performance gain by
the proposed architecture in the overall experimental stages.
This confirms that Fully Connected CGAN generates better
synthetic samples than the Unified CGAN. The results also
show that the average accuracy of the classification models

3
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TABLE 6. Unified CGAN similarity measure using euclidean distance.

TABLE 9. Confusion matrix of FCGAN for stage I.

Activity RTR RTS STS
Walking 0.54 0.59 0.29
Standing 0.39 0.62 0.47
Stand-to-sit 0.68 0.71 0.41
Sitting 0.37 0.58 0.43
Sit-to-stand 0.66 0.77 0.61
Sit-to-lie 0.69 0.84 0.55
Lying down 0.48 0.73 0.32
Lie-to-sit 0.77 0.83 0.52

TABLE 7. Average classification performance using deep learning.

0 1 2 3 4 5 6 7

1.00  0.00 0.00 0.00 000 0.00 0.00 0.00
0.00 086 0.10 0.04 000 0.00 0.00 0.00
0.07 009 0.76 0.00 004 0.02 0.02 0.00
0.00 000 0.00 1.00 000 0.00 0.00 0.00
0.17 004 0.00 0.00 068 0.04 0.07 0.00
0.10 0.00 0.04 0.00 007 0.79 0.00 0.00
0.00 000 0.00 0.13 010 0.00 0.77 0.00
0.12 000 0.00 0.00 0 0.13 0 0.75

0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit

N AN AW N=D

TABLE 10. Confusion matrix of unified CGAN for stage II.

Experimental Stages  Stagel  Stage 11 Stage 111 Stage IV 0 1 2 3 4 5 6 7
Ratio of Training 70:30 50:50 30:70 0:100 [1} 0.92 0.00 0.04 0.00 0.02 0.00 0.00 0.02
Data (Real %: 1 0.00 0.86 0.10 0.04 0.00 0.00 0.00 0.00
Synthetic%) 2 0.07 0.10 0.71 0.02 0.04 0.03 0.03 0.00
Unified CGAN  80.1 78.9 74.2 71.9 3 0.00 0.00 0.00 0.98 0.00 0.01 0.00 0.01
average accuracy (%) 4 0.17 0.04 0.00 0.01 0.65 0.05 0.08 0.00
FCGAN average  82.6 81.4 77.3 76.3 5 0.10 0.00 0.05 0.00 0.07 0.74 0.04 0.00
accuracy (%) 6 0.00 0.00 0.01 0.13 0.11 0.00 0.75 0.00
7 0.13 0.00 0.00 0.01 0.00 0.13 0.03 0.70
TABLE 8. Confusion matrix of unified CGAN for stage I. 0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit
0 1 2 3 4 5 6 7

099 000 0.00 0.00 000 0.00 0.00 0.01
0.00 083 0.12 005 000 0.00 0.00 0.00
0.07 0.09 0.76 0.00 004 0.02 0.02 0.00
0.00 000 0.00 099 000 0.00 0.00 0.01
0.17 0.04 0.00 000 068 0.04 0.07 0.00
0.10 0.00 0.04 000 007 077 001 0.01
0.00 000 0.00 020 0.12 0.00 0.68 0.00
0.12 000 0.00 0.03 000 0.13 0.01 0.71
0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit

N AN AW N=O

drops whenever real data is hybrid with synthetic data from
the generative models in both models. However, the accuracy
drop of the Unified CGAN is 0.6% and 1.3% higher than
the FCGAN when the ratio of the real and synthetic data is
50%:50%, and 30%:70% respectively. This confirms that the
proposed architecture generates more realistic synthetic data
than the state-of-the-art architecture.

We also show the confusion matrix of the four experimental
stages to better understand the performance of each class of
human activities. The best classification performance of the
overall experimental stages is achieved in stage I as shown in
Table 8 and Table 9. All classes of activities perform well with
quite low classification performance for class 7 (Lie-to-sit),
class 6 (Lying down), and class 4 (Sit-to-stand). The results
of the stage I also reveal that FCGAN outperforms Unified
CGAN in all activities except for class 2 (Stand-to-sit) and
class 4 (Sit-to-stand).

As shown in Table 10 and Table 11, the recognition per-
formance of all activity classes drops in stage II except for
Unified CGAN’s class 3 (sitting) and class 7(lie-to-sit). Class
O(walking) of the comparative models suffers the highest drop
while class 7(lie-to-sit) of Unified CGAN enjoys the highest
improvement. Nevertheless, the majority of FCGAN activity
classes maintain to have higher True Positives than Unified
CGAN.
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TABLE 11. Confusion matrix of FCGAN for stage II.

0 1 2 3 4 5 6 7

094 000 0.04 000 001 0.00 0.00 0.01
0.00 086 0.10 0.04 000 0.00 0.00 0.00
0.07 009 0.73 001 004 0.03 0.03 0.00
0.00 000 0.00 1.00 000 0.00 0.00 0.00
0.17 0.04 0.00 0.00 068 0.04 0.07 0.00
0.10 0.00 0.04 0.00 007 078 0.01 0.00
0.00 0.00 0.00 0.13 0.10 0.00 0.77 0.00
0.12 000 0.00 0.00 000 0.13 0.00 0.75

0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit

N AN AW N=D

TABLE 12. Confusion matrix of unified CGAN for stage III.

0 1 2 3 4 5 6 7

0.87 0.00 0.04 0.00  0.04 0.00 0.02 0.03
0.00 0.84 0.11 0.03  0.02 0.00 0.00 0.00
0.07 0.10 0.68 0.03  0.06 0.03 0.03 0.00
0.00 0.01 0.00 095 0.00 0.01 0.01 0.02
0.17 0.05 0.01 0.02 0.62 0.05 0.08 0.00
0.10 0.00 0.06 0.00 0.08 0.68 0.06 0.02
0.00 0.02 0.03 021 0.1 0.00 0.64 0.00
0.13 0.00 0.00 0.02  0.00 0.14 0.05 0.66

0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit

NN AR WN =S

Likewise, the recognition performance of all activity
classes drops in stage III but without any improvements seen
in stage III (see Table 12 and Table 13). Class 5 (sit-to-lie),
class 7 (lie-to-sit), and class O (walking) suffers the most
drops of FCGAN respectively while class 6 (lying down),
class 5 (sit-to-lie), and class 0 (walking) scores the highest
drop of the unified CGAN respectively.

As shown in Table 14 and Table 15, the recognition per-
formance of all activity classes drops in the final stage of
experiments for the Unified CGAN without any performance
improvement of a single class. class 0 (walking), class 2
(stand-to-sit), class 3 (sitting) scores the worst drop in this
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TABLE 13. Confusion matrix of FCGAN for stage Il

0 1 2 3 4 5 6 7
089 0.00 0.04 0.00 0.02 0.00 0.02 0.03
0.00 086 0.10 0.04 0.00 0.00 000 0.00
0.07 0.10 0.69 0.03 0.05 0.03 0.03 0.00
0.00 0.0l 0.00 097 0.00 0.01 000 0.01
0.17 0.05 0.00 0.02 063 0.05 008 0.00
0.10 0.00 0.06 0.00 0.08 071 0.05 0.00
0.00 0.00 0.01 0.13  0.11 0.00 0.75 0.00
0.13 0.00 0.00 0.01 0.00 0.13 0.04 0.69

0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-

to-lie, 6: lying down, 7: lie-to-sit

NN RWN=D

TABLE 14. Confusion matrix of unified CGAN for stage IV.

0 1 2 3 4 5 6 7

0.81 0.00 0.06 0.01 0.02 0.00 0.05 0.05
0.00 0.79 0.11 0.10 0.00 0.00 0.00 0.00
0.07 0.10 0.62 0.06 0.05 0.05 0.05 0.00
0.00 0.01 0.00  0.89 0.00 0.02 0.00 0.02
0.17 0.05 0.00  0.03 0.61 0.06 0.08 0.00
0.10 0.01 0.07 0.01 0.08 0.68 0.05 0.00
0.00 0.00 0.01 0.22 0.12 0.00 0.65 0.00
0.13 0.00 0.01 0.02 0.00 0.14  0.04 0.66

0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit

NN AW N=D

TABLE 15. Confusion matrix of FCGAN for stage IV.

0 1 2 3 4 5 6 7

0.85 0.00 0.06 0.00 0.02 0.00 0.02 0.05
0.00 0.84 0.11 0.05 0.00 0.00 0.00 0.00
0.07 0.10 0.69 0.03 0.05 0.03 0.03 0.00
0.00 0.01 0.00 0.95 0.00 0.02 0.00 0.02
0.17 0.05 0.00 0.02 0.63 0.05 0.08 0.00
0.10 0.00 0.07 0.00 0.08 0.70 0.05 0.00
0.00 0.00 0.01 0.13 0.11 0.00 0.75 0.00
0.13 0.00 0.00 0.01 0 0.13 0.04 0.69

0: walking, 1: standing, 2: stand-to-sit, 3: sitting, 4: sit-to-stand, 5: sit-
to-lie, 6: lying down, 7: lie-to-sit

N QAU AW N-=S

case. In FCGAN stage IV experiments, on the other hand,
half of activity classes maintained the same performance as
in stage III. A minor performance drop is seen in the other
activity classes (class 0 (walking), class 1 (standing), class 3
(sitting), and class 5 (sit-to-lie) respectively).

VI. CONCLUSION

This paper has proposed an enhanced GGAN architecture
for sensor-based activity recognition that synthesizes a more
natural transformation of human activity signals and achieves
faster model learning convergence and training stability.
In the proposed architecture, the generator and discriminator
networks encompass deep fully connected and convolution
layers, in contrast to state-of-the-art network architecture.
We have conducted several experiments on sensory data col-
lected from elderly data and showed that our proposed archi-
tecture generates better samples and converges faster through
visual and usability evaluation techniques. All our experi-
mental stages were limited to supervised CGANs. However,
the proposed method is significant enough to be combined
with any other GAN configuration. Therefore, a possible
extension of the proposed work is to study its effectiveness in
unsupervised and semi-supervised GAN setups. In the future,
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the enhanced architecture will also be improved further to
produce more quality samples. In addition, other datasets for
sensory-based activity recognition will be experimented with
to show the robustness of the newly proposed network.
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