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Fertility preferences significantly influence population dynamics and reproductive health outcomes, 
particularly in low-resource settings, such as Somalia, where high fertility rates and limited healthcare 
infrastructure pose significant challenges. Understanding the determinants of fertility preferences is 
critical for designing targeted interventions. This study leverages machine learning (ML) algorithms 
and Shapley Additive extensions (SHAP) to identify key predictors of fertility preferences among 
reproductive-aged women in Somalia. This cross-sectional study utilized data from the 2020 Somalia 
Demographic and Health Survey (SDHS), encompassing 8,951 women aged 15–49 years. The outcome 
variable, fertility preference, was dichotomized as either desire for more children or preference to 
cease childbearing. Predictor variables included sociodemographic factors, such as age, education, 
parity, wealth, residence, and distance to health facilities. Seven ML algorithms were evaluated for 
predictive performance, with Random Forest emerging as the optimal model based on metrics such 
as accuracy, precision, recall, F1-score, and the Area Under the Receiver Operating Characteristic 
Curve (AUROC). SHAP was employed to interpret the model by quantifying the feature contributions. 
The SHAP analysis identified the most influential predictors of fertility preferences as age group, 
region, number of births in the last five years, number of children born, marital status, wealth index, 
education level, residence, and distance to health facilities. Specifically, age group was the most 
significant feature, followed by region and number of births in the last five years. Women aged 45–49 
years and those with higher parity were significantly more likely to prefer no additional children. 
Distance to health facilities has emerged as a critical barrier, with better access being associated 
with a greater likelihood of desiring more children. The Random Forest model demonstrated superior 
performance, achieving an accuracy of 81%, precision of 78%, recall of 85%, F1-score of 82%, and 
AUROC of 0.89. SHAP analysis provided interpretable insights, highlighting the nuanced interplay 
of sociodemographic factors. This study underscores the potential of ML algorithms and SHAP in 
advancing our understanding of fertility preferences in low-resource settings. By identifying critical 
sociodemographic determinants, such as age group, region, number of births in the last five years, 
number of children born, marital status, wealth index, education level, residence, distance to health 
facilities, and employment status, these findings offer actionable insights to inform evidence-based 
reproductive health interventions in Somalia. Future research should expand the application of ML 
to longitudinal data and incorporate additional cultural and psychosocial predictors to enhance the 
robustness and applicability of this model.
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Background
Fertility preferences, which encompass the desire for additional children or the decision to cease childbearing, 
are critical indicators of reproductive intentions and population dynamics1,2. These preferences play a pivotal 
role in shaping fertility rates and are integral to achieving global reproductive health and population goals, 
including those outlined in the Sustainable Development Goals (SDGs)3,4. Understanding the determinants 
of fertility preferences is essential for designing effective interventions that address unmet needs for family 
planning, promote maternal and child health, and support gender equity in reproductive decision-making5,6.

While substantial research has explored fertility preferences using conventional statistical methods, there 
remains a significant gap in the application of advanced machine learning techniques to predict fertility 
preferences, particularly in low-resource settings such as Somalia. Traditional models, such as logistic regression, 
often assume linearity and may oversimplify the complex interactions between sociodemographic and geographic 
factors influencing fertility decisions. Previous studies have predominantly focused on individual demographic 
and socioeconomic determinants using these methods, which, while useful, often fail to capture complex, 
nonlinear relationships and interactions between multiple predictors7,8. Moreover, most research on machine 
learning applications in fertility prediction has centered on male fertility, with relatively little focus on women’s 
fertility preferences9–12. The role of artificial intelligence (AI) in assessing human fertility using risk factors 
has been extensively reviewed, highlighting the importance of data augmentation, explainability, and feature 
extraction in predictive models10. However, the majority of AI applications in fertility research have focused on 
infertility diagnosis rather than fertility preferences, particularly among women, creating a gap that this study 
seeks to address. Recent reviews have highlighted the application of interpretable machine learning methods in 
healthcare, including SHAP-based approaches for clinical decision-making13,14. The emergence of Explainable 
AI techniques, such as Shapley Additive Explanations (SHAP), presents an opportunity to enhance model 
interpretability, providing transparent and actionable insights into key predictors of fertility preferences11,15,16. 
Despite the increasing adoption of machine learning in healthcare and demographic research, studies that 
leverage Explainable AI methods to analyze fertility preferences among women remain scarce. This study aims 
to bridge these gaps by integrating machine learning and SHAP analysis to predict fertility preferences among 
reproductive-aged women in Somalia, offering a novel approach to understanding reproductive health behaviors 
in a high-fertility, low-resource setting.

This study makes several key contributions to the existing literature. First, it applies state-of-the-art machine 
learning algorithms to analyze fertility preferences among women in Somalia, a context characterized by 
high fertility rates, limited access to reproductive health services, and complex socio-cultural determinants of 
childbearing decisions5,17. Among these factors, access to healthcare services plays a crucial role in shaping 
fertility preferences. In many low-resource settings, including Somalia, long distances to health facilities have 
been identified as a significant barrier to maternal and reproductive healthcare, influencing both contraceptive 
use and fertility decisions18,19. Limited access to healthcare often results in lower uptake of family planning 
services, higher fertility rates, and increased unmet need for contraception, particularly in rural and nomadic 
populations where physical and financial constraints exacerbate the problem17,20,21.

Furthermore, the perception of healthcare accessibility influences reproductive decision-making, as women 
who struggle to reach health facilities may be less likely to seek antenatal care, leading to higher fertility 
preferences driven by concerns over maternal and child survival22,23. However, existing literature primarily 
views distance as a barrier to service utilization, but its potential role as a determinant of reproductive intentions 
remains underexplored1,24–26. It is possible that women with better access to health facilities may develop different 
fertility preferences, potentially due to increased confidence in maternal healthcare and child survival27,28. Given 
the critical role of healthcare accessibility in shaping reproductive behaviours, further investigation into this 
perspective is warranted29. However, traditional statistical methods may not effectively capture these complex 
relationships. Machine learning provides a novel approach by uncovering hidden patterns and interactions in 
large datasets that may not be evident using conventional techniques. This study provides empirical insights into 
the role of healthcare access in fertility preferences by leveraging machine learning techniques to analyze the 
relationship between distance to health facilities and reproductive intentions.

By comparing multiple machine learning models, this study identifies the most effective algorithm for fertility 
preference prediction and evaluates its performance using robust metrics such as accuracy, precision, recall, F1-
score, and AUROC. Second, the study enhances the interpretability of machine learning models through SHAP 
analysis, which quantifies the contribution of each predictor variable, thus addressing the “black-box” nature 
of machine learning and making the findings more accessible to policymakers and healthcare practitioners. 
By applying ML models, this study not only advances methodological research in fertility prediction but also 
offers actionable insights into how sociodemographic factors influence reproductive preferences in Somalia. 
This dual focus ensures that findings are both interpretable for policymakers and methodologically rigorous for 
researchers. Third, it provides a comprehensive assessment of the sociodemographic and healthcare access factors 
influencing fertility preferences, offering evidence-based insights to inform targeted interventions. Finally, this 
research contributes to the growing body of literature on artificial intelligence applications in reproductive health 
by addressing the underrepresentation of women’s fertility studies in machine learning research, complementing 
previous studies that have largely focused on male fertility using Explainable AI techniques as a contrast9–12,30.

To situate this study within the broader academic discourse, it is essential to examine existing research 
on fertility preferences and the application of machine learning in reproductive health. Prior studies have 
demonstrated that fertility preferences are shaped by multiple interrelated factors, including age, parity, 
educational attainment, economic status, geographic location, and cultural norms31,32. For instance, studies 
have found that older women and those with higher parity are more likely to express a preference to stop 
childbearing, while higher educational attainment is associated with smaller desired family sizes33,34. Economic 
considerations, such as household wealth and employment status, also play a crucial role, as financial constraints 
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often influence reproductive intentions35,36. In low-resource settings like Somalia, geographic and healthcare 
access barriers further impact fertility decisions, with rural and nomadic populations experiencing significant 
challenges in accessing reproductive health services18,19.

The use of machine learning in fertility prediction has gained traction in recent years, with studies 
demonstrating its potential to improve predictive accuracy and uncover hidden patterns in reproductive 
health data37,38. Recent research has applied machine learning techniques such as Random Forest, Support 
Vector Machines, and XGBoost to analyze male fertility, employing Explainable AI methods to interpret model 
outputs9,11,39,40. Notably, studies have unboxed industry-standard AI models for male fertility prediction using 
SHAP, highlighting the decision-making process in classification models10,11. Additionally, research has applied 
Explainable AI with Extreme Gradient Boosting and SMOTE for male fertility prediction, further emphasizing 
the potential of AI-based tools in reproductive health analytics11,41. However, these studies have primarily 
focused on infertility rather than fertility preferences. By shifting the focus to predicting fertility preferences 
among women, this study extends the existing literature by providing insights into reproductive decision-
making rather than infertility diagnosis. This distinction is crucial for developing policy-driven interventions 
that align with family planning programs and public health goals.

By addressing these research gaps and leveraging advanced analytical techniques, this study aims to develop 
an interpretable ML framework for predicting fertility preferences among women in Somalia. This research 
extends the application of ML beyond fertility diagnosis to fertility preference modeling, filling a critical gap 
in reproductive health analytics. This approach not only enhances methodological rigor but also provides 
actionable insights for policymakers and healthcare practitioners. By integrating predictive analytics with 
Explainable AI, the study offers a transparent and data-driven approach to informing family planning policies, 
particularly in high-fertility, low-resource settings. The findings have significant implications for designing 
targeted interventions that improve reproductive health outcomes and promote informed decision-making in 
family planning programs.

Key contributions
This study makes the following key contributions:

•	 This research pioneers the application of machine learning models to predict fertility preferences in Somalia, 
a data-scarce region where traditional demographic analysis is often limited, offering a new approach to un-
derstanding population dynamics.

•	 The study conducts a rigorous comparative evaluation of multiple AI models, systematically identifying the 
most effective approach based on key performance metrics, thereby providing a robust methodology for fu-
ture research in similar contexts.

•	 The study goes beyond “black-box” predictions by employing SHAP analysis to enhance the interpretability of 
model decisions, revealing key demographic and socioeconomic factors influencing fertility preferences and 
providing actionable insights for policymakers.

•	 The research establishes a systematic methodological framework for integrating AI techniques into demo-
graphic research in low-resource settings, offering a valuable template and guidelines for future studies and 
interventions.

Methods
Study design and data source
This study employed a cross-sectional design, utilizing secondary data from the 2020 Somalia Demographic and 
Health Survey (SDHS). The SDHS is a nationally representative household survey conducted by the Somalia 
Ministry of Health, in partnership with international organizations. Utilizing a stratified, multistage sampling 
approach, the SDHS collected data through face-to-face interviews with women aged 15–49 years across diverse 
regions of Somalia. For this analysis, the Individual Recode (IR) dataset within the SDHS was utilized, focusing 
on women who reported their place of delivery. The final analytical sample comprised 8,951 eligible women.

Study variables
The outcome variable, ‘fertility preference,’ was dichotomized into ‘desire for no more children’ (0) and ‘desire 
to have another child’1. Women who were undecided, sterilized, or declared infecund were excluded, as these 
categories did not provide unambiguous information regarding current fertility intentions. Fertility preference 
was assessed based on the participant’s stated preference for more children at the time of the survey, aligning 
with the standard approach used in DHS to capture current fertility intentions which is time-bound to next two 
years. The predictor variables for the study included sociodemographic characteristics, such as age (categorized 
into age groups), education level (no education, primary, secondary, and tertiary), wealth index (categorized 
into quintiles), marital status (married, widowed, divorced, single), residence (urban, rural, nomadic), region 
of residence, employment status, number of births in the past five years, total number of children born, and 
distance to the nearest health facility.

Data processing and analysis
Data analysis was performed using a mixed method approach. Initially, exploratory and statistical analyses were 
conducted using STATA 17. Following this, the main data analysis was conducted in a Python 3.10 environment 
utilizing a Jupyter Notebook. This method utilizes robust libraries, such as Pandas, NumPy, Scikit-learn, 
Matplotlib, SHAP, SciPy, and Seaborn, facilitating effective data manipulation, exploration, visualization, model 
development, and evaluation of feature importance.
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Data pre-processing
The raw SDHS data underwent extensive pre-processing to ensure its appropriateness for machine learning 
applications. Outliers in continuous variables were detected using the Tukey method, but their impact was 
minimal, so no transformations or removals were necessary. For categorical variables, outliers were either 
merged with existing categories or removed if they were rare and did not hold analytical significance. Since 
most variables were categorical, normalization was not required. The data cleaning process also addressed 
inconsistencies, managed missing values, and refined feature engineering by converting selected continuous 
variables into categorical ones where suitable. This approach enhanced model interpretability and improved 
robustness by simplifying predictor-outcome relationships.

Addressing class imbalance using SMOTE
An initial assessment indicated class imbalance in the outcome variable, with a preference for no more children 
being underrepresented. To tackle this issue and improve model performance, the Synthetic Minority Over-
sampling Technique (SMOTE) was utilized. SMOTE addresses class imbalance by creating synthetic samples for 
the minority class through interpolation between the existing instances. This process results in a more balanced 
dataset, allowing the model to learn effectively from both classes and potentially enhance the predictive accuracy 
for the underrepresented class.

Feature selection
An extensive feature selection process was undertaken to identify the most significant predictors of fertility 
preference. Exploratory data analysis (EDA) methods, including descriptive statistics and visualizations, offer 
valuable insights into the distribution of variables and their relationships with outcomes. Bivariate analysis was 
used to assess the associations between individual predictors and fertility preferences. To further refine the 
selection of features, Recursive Feature Elimination (RFE) was used to systematically eliminate less important 
predictors. Additionally, Cramer’s V statistic was applied to evaluate the correlations among predictors, thereby 
reducing multicollinearity and enhancing the robustness of the final feature set. This integrated approach, which 
combined statistical analysis, machine learning methods, and a review of the existing literature, resulted in a 
well-rounded set of predictors for model development.

Feature importance
The assessment of feature importance was conducted using SHapley Additive exPlanations (SHAP) values. 
SHAP offers a model-agnostic and consistent method for elucidating the contribution of each predictor 
variable to predictions made for fertility preferences. By assigning an importance score to each feature, SHAP 
provides critical insights into how individual predictors affect a model’s output. This analysis facilitates a deeper 
understanding of the relative significance of various factors in predicting outcomes related to fertility preferences.

Model development
To capture the multifaceted nature of fertility preferences, we selected seven machine learning models, 
encompassing a diverse range of learning strategies: linear (Logistic Regression), kernel-based (Support Vector 
Machine), tree-based (Decision Tree, Random Forest), distance-based (K-Nearest Neighbors), and boosting 
(XGBoost, Gradient Boosting Machine) approaches. These models were chosen to allow for a comparative 
evaluation of predictive performance across different modeling paradigms. Specifically, Logistic Regression 
was utilized as a baseline model, while Support Vector Machine was explored for its effectiveness in handling 
complex relationships. Tree-based models, including Decision Tree and Random Forest, leveraged ensemble 
techniques to enhance accuracy. K-Nearest Neighbors classified data by assessing the proximity to neighboring 
points. Finally, Gradient Boosting and XGBoost built models iteratively to improve performance. The algorithms’ 
effectiveness in predicting fertility preferences was evaluated based on metrics such as accuracy, precision, recall, 
and F1-score, as well as their capacity to identify key influencing factors.

Model training and evaluation
To ensure a robust model performance, the dataset was split into training (80%) and testing (20%) sets. The 
models were trained using the training set and then evaluated on the unseen test set using a comprehensive 
array of performance metrics, including accuracy, precision, recall, F1-score, Area Under the Receiver Operating 
Characteristic Curve (AUROC), and confusion matrices. To further enhance the generalizability of the model 
and reduce the likelihood of overfitting, stratified k-fold cross validation (k = 5) was performed. This technique 
systematically divides the dataset into 5 subsets, ensuring that each fold maintains the same class distribution 
as the full dataset. The model was iteratively trained and evaluated across these folds, and the final performance 
metrics were averaged to provide a reliable and stable estimate of its predictive capability.

Model selection
The selection of the model was based on a thorough evaluation of the various performance metrics. The 
confusion matrix provided an in-depth analysis of the model predictions, categorizing them into true positives 
(TP), false positives (FP), true negatives (TN), and false negatives (FN). Accuracy, which reflects the overall 
proportion of correct predictions, was used as the key metric. Precision measures the ratio of true positive 
predictions to all predicted positive cases, while recall (sensitivity) assesses the proportion of actual positive 
cases that were correctly identified. The F1-score, which balances precision and recall, offers a comprehensive 
evaluation of model performance. By comparing these metrics across all seven machine learning algorithms, 
the model demonstrating the most favorable combination of performance indicators was chosen as the optimal 
model for predicting fertility preferences (Fig. 1).
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Results
Sociodemographic characteristics
The study included 8,951 women aged 15–49 years, representing diverse sociodemographic backgrounds 
across Somalia (Table 1). The largest age group was 25–29 years (23.99%), whereas women aged 45–49 years 
constituted the smallest group (5.10%). Most participants had no formal education (83.16%), and only 1.38% 
achieved tertiary education. Nearly half (42.98%) of the respondents resided in urban areas, while 31.91% were 
nomadic. Regarding wealth status, the lowest quintile accounted for 22.55% of the participants and 88.29% were 

Fig. 1.  Machine learning workflow for fertility preference prediction in Somalia.
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Category Subcategory Freq. Percent

Age in 5-year groups

15–19 820 8.27

20–24 1,852 18.67

25–29 2,379 23.99

30–34 1,824 18.38

35–39 1,629 16.42

40–44 909 9.16

45–49 506 5.1

Education

No Education 8,268 83.16

Primary 1,209 12.16

Secondary 328 3.3

Higher 137 1.38

Wealth quintile

Lowest 2,242 22.55

Second 1,932 19.43

Middle 1,835 18.45

Fourth 2,075 20.87

Highest 1,858 18.69

Current marital status

Married 8,778 88.29

Divorced 798 8.02

Widowed 366 3.69

Distance to health facility
big problem 6,184 62.47

not a big problem 3,715 37.53

Currently working
Yes 790 7.95

No 9,150 92.05

Births in last five years

0 2,568 25.83

1 2,584 25.99

2 2,981 29.99

3 1,543 15.52

4 + 266 2.68

Children ever born

0 976 9.81

1–2 2,340 23.54

3–4 2,649 26.65

5–6 1,956 19.68

7–8 1,148 11.54

9+ 873 8.78

Residence

Urban 3,671 36.93

Rural 3,098 31.16

Nomadic 3,173 31.91

Region

Awdal 965 9.71

Woqooyi Galbeed 707 7.11

Togdheer 343 3.45

Sool 689 6.93

Sanaag 961 9.67

Bari 655 6.59

Nugaal 1,119 11.25

Mudug 1,105 11.12

Galgaduud 1,058 10.64

Hiraan 732 7.37

Middle Shabelle 356 3.58

Banadir 586 5.9

Bay 94 0.95

Bakool 320 3.22

Gedo 84 0.84

Lower Juba 167 1.68

Table 1.  Sociodemographic characteristics.
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currently married. Distance to health facilities was reported as a major problem by 62.47% of the women, and 
only 7.95% were employed. Births in the last five years were most common among women who reported two 
births (29.99%), while 9.81% had no children ever born.

Predictors of fertility preferences
Table  2 presents the results of logistic regression analyses, serving as a baseline model for comparison. The 
table summarizes the associations between sociodemographic factors and fertility preferences. Associations are 
presented as both crude (COR) and adjusted odds ratios (AOR). Age emerged as a significant predictor, with 
women aged 45–49 years being over five times more likely to prefer no more children compared to those aged 
15–19 years (AOR = 5.29; 95% CI: 3.16, 8.87). Higher education levels were associated with reduced odds of 
desiring no more children, with primary education showing a significant protective effect (AOR = 0.56; 95% CI: 
0.42, 0.76). Married women were less likely to report a preference for no more children compared to widowed 
women (AOR = 5.60; 95% CI: 4.25, 7.40). Additionally, distance to health facilities, employment status, and the 
total number of children born significantly influenced fertility preferences. For instance, women with seven or 
more children were three times as likely to prefer no additional children compared to those with no children 
(AOR = 3.17; 95% CI: 2.01, 5.02).

Model performance evaluation
To evaluate the performance of various machine learning algorithms in predicting fertility preferences among 
reproductive women in Somalia, we employed seven different models: Logistic Regression (LR), Support Vector 
Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), Gradient Boosting 
(GB), and XGBoost (XGB). The models were assessed using a range of performance metrics, including accuracy, 
precision, recall, F1-score, and the Area Under the Receiver Operating Characteristic Curve (AUROC). The 
Random Forest model outperformed the other models across most metrics, achieving the highest accuracy 
(81%), precision (78%), recall (85%), F1-score (82%), and AUROC (0.81). Confusion matrix analysis revealed 
that the RF model minimized false negatives (245) while maintaining a high true-positive rate (1,251) and true-
negative rate (1,397). This minimization of false negatives is particularly important in this context, as failing to 
identify women who desire more children could limit the impact of targeted reproductive health interventions. 
The high true-positive and true-negative rates further demonstrate the model’s reliability in correctly classifying 
women’s fertility preferences. These findings highlight the robustness and suitability of the RF model for 
predicting fertility preferences (Table  3; Figs.  2; Table  3). To provide a comprehensive evaluation of model 
performance, we used accuracy to measure the overall proportion of correct predictions. Precision was used to 
assess the model’s ability to correctly identify women with a preference for more children, while recall measured 
the model’s ability to capture all women with that preference. The F1-score, which balances precision and recall, 
was crucial for optimizing the model’s predictive capability. Finally, AUROC was used to evaluate the model’s 
ability to discriminate between the two classes.

AUROC curve analysis
The Receiver Operating Characteristic (ROC) curve is a graphical representation of a model’s diagnostic ability, 
plotting the true positive rate against the false positive rate at various threshold settings. The Area Under the 
ROC Curve (AUROC) provided a single metric for evaluating the overall performance of the model. Figure 3 
shows the ROC curves for all seven models, with the AUROC values indicated in the legend. The Random Forest 
model achieved the highest AUROC of 0.89, followed closely by XGBoost (0.86), and Gradient Boosting (0.80). 
The high AUROC values suggest that these models have a strong ability to distinguish between the two fertility 
preference classes.

Features importance analysis using SHAP
To evaluate the contribution of each feature to the model’s predictions, we employed SHapley Additive 
exPlanations (SHAP) values. SHAP values provide a unified measure of feature importance, indicating how each 
feature influences the model’s output by calculating the contribution of each feature to the difference between the 
actual prediction and the average prediction. Figure 4 presents the SHAP beeswarm plot, summarizing the impact 
and ranking of each feature on model predictions. Features are ranked by importance, with age group being the 
most influential. The color gradient (blue to red) represents feature values from low to high, respectively. Figure 4 
displays the SHAP feature importance plot, confirming that age group is the strongest predictor, followed by 
region and number of births in the last five years. Figure 5 provides the SHAP dot plot, illustrating the spread and 
density of SHAP values for each feature and highlighting variability in feature impact across predictions. SHAP 
analysis revealed age group as the most influential predictor, with younger women exhibiting a higher likelihood 
of desiring additional children. As confirmed by the beeswarm and feature importance plots, region and number 
of births in the last five years also played significant roles, reflecting geographical and parity-related variations 
in fertility preference. The wealth index and education level had moderate effects, suggesting that economic 
and educational empowerment may influence reproductive decisions. Notably, distance to healthcare facilities 
emerged as a key factor, with SHAP values indicating considerable variability in its effect on fertility preference, 
ranging from a strong negative impact (reduced preference) for women in remote areas to a moderate positive 
impact (increased preference) for women with better access. The SHAP feature importance and beeswarm plots 
consistently ranked these factors as key predictors, demonstrating their contribution to fertility preference 
modeling.

Figure 5 shows the SHAP feature importance plot, which ranks the features based on their mean absolute 
SHAP values. This plot confirms that age group is the most important feature, followed by “region” and number 
of births.
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Variable

Fertility Preference

COR [95% C.I] AOR [95% C.I]Have Another Freq.  (%)
No More
Freq. (%)

Age Group

15–19 (Reference) 732 (89.30%) 88 (10.70%)

20–24 1,685 (90.95%) 168 (9.05%) 0.83 [0.57, 1.22] 0.85 [0.56, 1.28]***

25–29 2,097 (88.16%) 282 (11.84%) 1.12 [0.78, 1.61] 1.00 [0.66, 1.53]

30–34 1,514 (83.02%) 309 (16.98%) 1.71 [1.19, 2.45]** 1.23 [0.80, 1.89]

35–39 1,267 (77.78%) 362 (22.22%) 2.38 [1.67, 3.40]*** 1.54 [1.00, 2.39]*

40–44 580 (63.86%) 328 (36.14%) 4.72 [3.26, 6.85]*** 2.84 [1.79, 4.48]***

45–49 221 (43.75%) 285 (56.25%) 10.73 [7.13, 16.15]*** 5.29 [3.16, 8.87]***

Education Level

No Education (Reference) 6,647 (80.40%) 1,620 (19.60%)

Primary 1,067 (88.25%) 142 (11.75%) 0.55 [0.43, 0.70]*** 0.56 [0.42, 0.76]***

Secondary 284 (86.67%) 44 (13.33%) 0.63 [0.43, 0.93]* 0.71 [0.43, 1.16]

Higher 121 (88.45%) 16 (11.55%) 0.54 [0.27, 1.08] 0.58 [0.26, 1.30]

Wealth Index

Lowest (Reference) 1,899 (84.70%) 343 (15.30%)

Second 1,587 (82.16%) 345 (17.84%) 1.20 [0.96, 1.51] 1.05 [0.81, 1.36]

Middle 1,462 (79.66%) 373 (20.34%) 1.41 [1.13, 1.78]** 1.38 [0.99, 1.92]*

Fourth 1,649 (79.46%) 426 (20.54%) 1.43 [1.15, 1.78]** 1.28 [0.91, 1.78]

Highest 1,523 (81.96%) 335 (18.04%) 1.22 [0.97, 1.53] 1.12 [0.78, 1.61]

Marital Status

Married (Reference) 7,447 (84.83%) 1,331 (15.17%)

Divorced 490 (61.46%) 307 (38.54%) 3.51 [2.85, 4.32]*** 3.51 [2.85, 4.32]***

Widowed 183 (49.97%) 183 (50.03%) 5.60 [4.25, 7.39]*** 5.60 [4.25, 7.40]***

Distance to Health Facility

Big problem (Reference) 5,234 (84.64%) 950 (15.36%)

not a big problem 2,852 (76.78%) 863 (23.22%) 1.67 [1.44, 1.91]*** 1.69 [1.44, 1.98]***

Currently Working

Yes (Reference) 581 (73.55%) 209 (26.45%)

No 7,537 (82.37%) 1,613 (17.63%) 0.60 [0.47, 0.75]*** 0.83 [0.64, 1.07]

Births in Last 5 Years

0 (Reference) 1,837 (71.53%) 731 (28.47%)

1 2,179 (84.34%) 405 (15.66%) 0.47 [0.39, 0.56]*** 0.63 [0.50, 0.80]***

2 2,565 (86.03%) 417 (13.97%) 0.41 [0.34, 0.49]*** 0.61 [0.48, 0.78]***

3 1,327 (86.03%) 216 (13.97%) 0.41 [0.32, 0.51]*** 0.64 [0.47, 0.87]**

4 + 212 (79.60%) 54 (20.40%) 0.95 [0.61, 1.49] 0.95 [0.61, 1.49]

Total Children Ever Born

0 (Reference) 838 (85.85%) 138 (14.15%)

1–2 2,061 (88.10%) 278 (11.90%) 0.82 [0.60, 1.11] 1.25 [0.86, 1.82]

3–4 2,249 (84.90%) 400 (15.10%) 1.08 [0.80, 1.45] 1.47 [1.00, 2.17]*

5–6 1,546 (79.03%) 410 (20.97%) 1.61 [1.19, 2.16]*** 2.00 [1.34, 3.00]***

7–8 843 (73.46%) 305 (26.54%) 2.19 [1.61, 2.98]*** 2.49 [1.62, 3.83]***

9+ 582 (66.71%) 291 (33.29%) 3.03 [2.01, 4.56]*** 3.17 [2.01, 5.02]***

Residence

Urban (Reference) 2,995 (81.58%) 676 (18.42%)

Rural 2,491 (80.41%) 607 (19.59%) 1.08 [0.92, 1.27] 1.08 [0.88, 1.33]

Nomadic 2,634 (83.01%) 539 (16.99%) 0.91 [0.77, 1.07] 0.91 [0.77, 1.07]

Region

Awdal (Reference) 837 (86.74%) 128 (13.26%)

Woqooyi Galbeed 579 (81.96%) 128 (18.04%) 1.32 [0.83, 2.09] 1.44 [0.93, 2.22]

Togdheer 287 (83.69%) 56 (16.31%) 1.18 [0.76, 1.84] 1.28 [0.84, 1.95]

Sool 561 (81.46%) 128 (18.54%) 1.49 [0.96, 2.30] 1.60 [1.01, 2.52]*

Sanaag 761 (79.20%) 200 (20.80%) 1.72 [1.17, 2.52]** 1.81 [1.17, 2.81]**

Bari 489 (74.62%) 166 (25.38%) 1.81 [1.11, 2.93]** 1.81 [1.11, 2.93]**

Nugaal 837 (74.78%) 282 (25.22%) 2.14 [1.35, 3.39]*** 2.14 [1.35, 3.39]***

Continued
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Figure 6 provides a SHAP dot plot, illustrating the distribution of SHAP values for each feature. This plot 
helps visualize the spread and density of the SHAP values, providing insights into the variability and impact of 
each feature.

Discussion
This study pioneers the application of machine learning models to predict fertility preferences among women 
of reproductive age in Somalia, a region where traditional demographic analysis is often constrained by data 
limitations. By leveraging machine learning techniques, this study offers a new approach to understanding 
population dynamics, particularly in data-scarce settings. The findings demonstrate the feasibility and value 
of employing machine learning methods to analyze fertility trends in contexts where conventional statistical 
models may struggle to capture non-linear interactions42,43. Unlike traditional approaches, which often assume 
linear relationships, machine learning models provide a more flexible and scalable framework for uncovering 
complex patterns7,44. For instance, this study identified significant non-linear relationships between women’s 
education levels, economic status, and access to healthcare, which are crucial factors in understanding fertility 
preferences. The capacity of machine learning to reveal these interactions aligns with emerging evidence 
advocating for the integration of artificial intelligence into demographic research to enhance analytical power 
and predictive accuracy37,45,46.

A key contribution of this study is the identification of important predictors influencing fertility preferences. 
The results indicate that age group, region, number of births in the last five years, number of children ever 
born, marital status, wealth index, education level, residence, distance to health facilities, and employment 
status play significant roles in shaping women’s reproductive decisions. These findings align with previous 
studies emphasizing the role of sociodemographic and economic factors in fertility preferences1,43,47–49. Several 
studies have emphasized the importance of factors such as parity, age, and access to healthcare in shaping fertility 
preferences1,50,51 [e.g., Ahinkorah et al., 2021; Khan et al., 2023]. Our findings reinforce these observations, 
highlighting that predictive modeling can complement existing evidence and support program design. To 
enhance model interpretability, this study employed SHapley Additive exPlanations (SHAP) analysis to quantify 
the contribution of each predictor variable to fertility preferences. SHAP results confirmed that age, education, 

Algorithms

LR SVM KNN DT RF GB XGB

Evaluation Metrics

Accuracy 0.68 0.69 0.78 0.78 0.81 0.73 0.78

Precision 0.69 0.71 0.74 0.76 0.78 0.74 0.78

Recall 0.65 0.65 0.85 0.81 0.85 0.71 0.79

F1-score 0.67 0.68 0.79 0.79 0.82 0.72 0.79

AUROC 0.68 0.69 0.77 0.78 0.81 0.73 0.78

Confusion Matrix

TP 1155 1204 1147 1213 1251 1222 1261

FP 483 434 491 425 387 416 377

FN 576 582 247 306 245 481 337

TN 1066 1060 1395 1336 1397 1161 1305

Table 3.  Performance evaluation metrics and confusion matrix for ML models in predicting fertility 
Preferences.

 

Variable

Fertility Preference

COR [95% C.I] AOR [95% C.I]Have Another Freq.  (%)
No More
Freq. (%)

Age Group

Mudug 857 (77.54%) 248 (22.46%) 1.95 [1.23, 3.11]** 1.95 [1.23, 3.11]**

Galgaduud 965 (91.22%) 93 (8.78%) 0.51 [0.30, 0.86]** 0.63 [0.38, 1.04]*

Hiraan 606 (82.82%) 126 (17.18%) 1.46 [0.92, 2.31] 1.46 [0.92, 2.31]

Middle Shabelle 264 (74.20%) 92 (25.80%) 2.22 [1.36, 3.62]*** 2.22 [1.36, 3.62]***

Banadir 519 (88.47%) 68 (11.53%) 0.73 [0.47, 1.16] 0.73 [0.47, 1.16]

Bay 83 (88.32%) 11 (11.68%) 0.78 [0.43, 1.41] 0.87 [0.49, 1.55]

Bakool 282 (88.21%) 38 (11.79%) 1.00 [0.58, 1.73] 1.00 [0.58, 1.73]

Gedo 76 (90.15%) 8 (9.85%) 0.71 [0.40, 1.28] 0.71 [0.40, 1.28]

Lower Juba 116 (69.30%) 51 (30.70%) 2.85 [1.75, 4.62]*** 2.90 [1.85, 4.54]***

Table 2.  Logistic regression (COR and AOR) of factors associated with fertility preference.
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Fig. 3.  ROC curve for all models.

 

Fig. 2.  Model evaluation metrics for all models.
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wealth index, marital status, and number of children ever born were the most influential factors. This approach 
addressed concerns about machine learning models functioning as “black boxes” by providing actionable 
insights for policymakers10,52. Older women and those with higher parity were more likely to prefer stopping 
childbearing, a pattern well documented in the literature and often attributed to the increasing financial, physical, 
and emotional demands of raising multiple children53–55. Additionally, women who perceived distance to health 
facilities as a barrier were more likely to prefer stopping childbearing, reflecting the persistent challenges of 
healthcare access in Somalia, particularly in rural and nomadic communities17,18,29,56. These findings emphasize 
the need for targeted interventions such as mobile clinics and community-based family planning programs to 
improve healthcare accessibility and support informed fertility decision-making25,57.

A comparative evaluation of machine learning models revealed that the Random Forest model outperformed 
other algorithms, including Logistic Regression, across key performance metrics such as accuracy, precision, 
recall, and F1-score, showing the highest performance with an AUROC value of 0.97, accuracy of 90%, precision 
of 91%, recall of 92%, and F1-score of 0.91. Random Forest’s ensemble nature, which combines predictions 
from multiple decision trees, is likely a key factor in its success. This approach reduces the risk of overfitting, a 
common challenge in complex datasets, and allows the model to effectively learn intricate, non-linear patterns 
and relationships between variables. It is important to consider what these metrics tell us: accuracy indicates 
the overall correctness of the model’s predictions, precision measures how often the model correctly predicts 
a woman does want more children when it says she does, and recall measures how often the model correctly 
identifies women who actually want more children. The F1-score provides a balance between precision and 
recall. In this study, prioritizing a high F1-score was essential to minimize both false positives (incorrectly 
predicting a woman wants more children) and false negatives (incorrectly predicting a woman does not want 
more children), both of which have significant implications for designing effective interventions. The Random 
Forest model achieved an accuracy of 81% compared to 68% for Logistic Regression, demonstrating its superior 
ability to capture non-linear relationships and complex feature interactions. While Random Forest offered the 
best overall accuracy and F1-score, it’s important to note that XGBoost had a higher number of true positives, 
and KNN performed comparably on recall. These nuances suggest that the optimal model choice may depend on 
specific outcome priorities, such as minimizing false negatives versus maximizing precision.

While Logistic Regression identifies statistically significant predictors, machine learning models like Random 
Forest offer greater predictive accuracy by uncovering complex, nonlinear interactions, which are crucial as the 
relationship between factors like education level or wealth index and fertility preferences is rarely linear. For 
instance, SHAP values highlight not only which variables matter but also the direction and strength of their 
influence per individual prediction, thus enabling more nuanced understanding. The greater predictive accuracy 
of Random Forest, as evidenced by the higher F1-score and AUROC, translates to more reliable identification 
of women with specific fertility preferences, which is vital for resource-constrained settings like Somalia where 
accurate targeting of interventions is essential to maximize impact. SHAP analysis further enhances the value 

Fig. 4.  SHAP beeswarm plot (summary plot).
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Fig. 6.  SHAP dot plot.

 

Fig. 5.  SHAP feature Importance plot.
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of the Random Forest model by providing a more granular understanding of the predictors. Unlike Logistic 
Regression, which provides a single coefficient indicating the direction and strength of a predictor’s average 
effect, SHAP values show how each predictor influences individual women’s preferences. This allows for 
personalized interventions, recognizing that the same factor (e.g., distance to a health facility) may have varying 
degrees of influence on different women. Therefore, the nuanced understanding gained from machine learning 
and SHAP analysis can significantly improve the design and implementation of family planning programs. For 
instance, instead of a blanket approach to increasing education, interventions can be tailored to address specific 
educational barriers that most strongly influence fertility preferences within certain subgroups.

The interpretation of metric values, such as the 78% precision and 81% accuracy observed, is highly context-
dependent, and there are no universal thresholds for ‘good’ or ‘bad’ performance. In this study, the 13% increase 
in accuracy from Logistic Regression to Random Forest, and the corresponding improvement in the F1-score, 
represent a substantial gain in predictive performance. Given the resource-constrained setting of Somalia, even 
small improvements in accuracy can translate to more efficient targeting of interventions and better outcomes 
for women. Researchers must also consider the trade-offs between metrics. For instance, if the primary goal 
were to capture every woman who desires more children (high recall), a model with slightly lower precision 
might be acceptable. However, we prioritized a balanced approach, reflected in the F1-score, to minimize 
both false positives and false negatives, as both types of errors have implications for intervention effectiveness. 
Achieving an 81% accuracy in predicting fertility preferences in Somalia, a region with complex sociocultural 
dynamics and data limitations, indicates a robust model. While higher accuracies might be attainable in less 
challenging contexts, our results demonstrate the Random Forest model’s suitability for informing evidence-
based policymaking in this specific setting. Future research should explore the applicability of these metrics and 
models in other similar data-limited contexts.

While Logistic Regression remains widely used due to its interpretability, its assumption of linear relationships 
may oversimplify fertility decision-making processes42,44,52. These results align with existing studies that highlight 
the advantages of ensemble-based approaches like Random Forest in demographic research37,38. The findings 
underscore the importance of systematically evaluating multiple machine learning models to determine the 
most effective approach for specific research applications. This comparative analysis provides a methodological 
framework that can be adapted for future studies on fertility preferences and other demographic phenomena, 
particularly in data-limited settings48,50. In particular, machine learning excels at capturing complex non-linear 
relationships between predictors and the outcome variable, which is a significant advantage in this context. 
While logistic regression assumes a linear relationship between the log-odds of the outcome and the predictors, 
machine learning models, such as Random Forest, can model more intricate patterns. This is because Random 
Forest, for example, can partition the data space into smaller regions with different relationships, allowing it 
to adapt to non-linearities. Our analysis identified several key sociodemographic factors influencing fertility 
preferences. Both the logistic regression model and the SHAP analysis highlighted the significant roles of age, 
parity, and region1,58. The logistic regression model provided a traditional understanding of these associations in 
terms of odds ratios (Table 2). However, SHAP analysis offered additional, more nuanced insights. Specifically, 
SHAP revealed case-specific impact scores, demonstrating how the influence of these factors varies across 
different subpopulations. For instance, while both methods identified age as an important predictor, SHAP 
showed the magnitude of age’s influence varied depending on other factors. Moreover, SHAP analysis, derived 
from the Random Forest model, implicitly captured interactions between variables, such as the interaction 
between age and distance to a health facility. These interaction effects, while potentially present in the data, are 
not explicitly modeled in the logistic regression.

To enhance model interpretability, this study employed SHapley Additive exPlanations (SHAP) analysis to 
quantify the contribution of each predictor variable to fertility preferences. SHAP results confirmed that age, 
education, wealth index, marital status, and number of children ever born were the most influential factors. 
This approach addressed concerns about machine learning models functioning as “black boxes” by providing 
actionable insights for policymakers10,59. For example, the quantification of education’s impact on fertility 
preferences supports policies promoting female education as a means to influence reproductive choices31,32,60. 
Women with primary education were less likely to prefer stopping childbearing than those with no formal 
education, a finding consistent with research demonstrating the transformative role of education in reproductive 
decision-making31,61. Education enhances women’s autonomy, increases awareness of family planning options, 
and empowers them to make informed choices about childbearing. Given Somalia’s low female education 
rates, expanding access to education could have substantial implications for fertility preferences and broader 
reproductive health outcomes62.

Beyond its empirical contributions, this study establishes a systematic methodological framework for 
integrating artificial intelligence into demographic research in low-resource environments. The framework 
includes key steps such as data preprocessing, model selection, performance evaluation, and interpretability 
analysis, offering a structured guide for future applications. The successful implementation of this framework 
underscores the potential of artificial intelligence to enhance demographic studies and inform evidence-based 
policymaking in regions where traditional data collection methods are constrained42,43,63. Future research can 
build upon this approach by incorporating additional data sources, exploring more advanced machine learning 
algorithms, and assessing the long-term effects of reproductive health interventions16,64. The integration of 
machine learning with demographic research has the potential to transform fertility analysis by uncovering 
hidden patterns in reproductive behavior and facilitating more targeted interventions45,64.

Limitations
Despite providing valuable insights, this study has some inherent limitations. The cross-sectional design 
precludes the establishment of causal relationships between the factors and fertility preferences. Furthermore, 
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the analysis relied on self-reported data, which may be subject to recall or social desirability bias. The study 
primarily focused on sociodemographic factors, potentially overlooking other influential factors, such as cultural 
norms, religious beliefs, and access to family planning services. In addition, reliance on secondary data limits 
the ability to explore specific contextual factors and individual-level experiences that may influence fertility 
decisions. Another important limitation is the lack of external validation of the developed machine learning 
models. Future research should prioritize validating these models using independent datasets from similar or 
different contexts to assess their generalizability and robustness.

Conclusion
This study demonstrated the utility of machine learning algorithms, particularly random forests, in predicting 
fertility preferences among reproductive-aged women in Somalia. By identifying critical sociodemographic 
determinants, including age group, region, number of births in the last five years, number of children born, 
marital status, wealth index, education level, residence, distance to health facilities, and employment status, the 
findings provide actionable insights into reproductive health policies and programs. SHAP analysis enhanced 
the interpretability of the ML models, enabling a nuanced understanding of the factors influencing fertility 
preferences. These results emphasize the potential of integrating advanced analytical techniques with traditional 
approaches to address unmet needs for family planning and to improve maternal and child health outcomes 
in low-resource settings. Future research should continue to explore the application of machine learning in 
reproductive health, expanding its scope to diverse populations and integrating longitudinal data to capture 
dynamic changes in fertility preferences. Furthermore, future research should externally validate the model on 
independent datasets or in other sub-Saharan African contexts to enhance generalizability.

Data availability
The data supporting the findings of this study are publicly available in the 2020 Somali Demographic and Health 
Survey (SDHS), which can be accessed at https://microdata.nbs.gov.so/index.php/catalog/50. All data were ​o​b​t​a​
i​n​e​d from resources available in the public domain.
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