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 Drought is a recurring natural disaster that can cause significant damage 

to agricultural production, human livelihoods, and the environment. 

Drought forecasting is an important tool for managing and mitigating the 

impacts of drought. This study aimed to improve drought forecasting 

through the use of machine learning models. Specifically, the study 

evaluated the performance of three machine learning models, namely 

Extreme Learning Machine (ELM), Random Forest (RF), and Support 

Vector Regression (SVR), for forecasting Standardized Precipitation 

Index (SPI) drought. These models were trained using precipitation data 

of Hiran region, Somalia from 1980 to 2021, to evaluate their ability to 

accurately predict drought conditions. The results showed that the SVR 

model performed the best, with an R2 value of 0.753, MAE of 0.344, and 

RMSE of 0.488. The ELM and RF models also performed well. The study 

highlights the potential of machine learning models to improve drought 

forecasting, and the importance of evaluating multiple models to select 

the one that performs best for a specific dataset. 

 

 

 

   

 

This work is licensed under a Creative Commons Attribution Non-Commercial 4.0 

International License. 

 

 

1. INTRODUCTION 

Drought is a natural disaster that occurs when there is a prolonged period of insufficient rainfall or other 

forms of precipitation [33]. It can be challenging to determine its length, intensity, and severity this causes a 
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significant impact on the environment, agriculture, and communities [17], [48]. 

 

Drought has four main categories which are agricultural, meteorological, hydrological, and socioeconomic 

[45]. Precipitation is a typical indication of meteorological drought since it is connected to a lack of it [32]. 

A drought with insufficient groundwater and surface water supplies over the water system is called a 

hydrological drought. Streamflow, groundwater, and soil moisture can all give clues as to whether there is a 

hydrological drought [32], [60]. The emergence of meteorological and hydrological droughts that are 

related to a shortage of soil moisture and constrain plant growth are known as agricultural droughts [45]. A 

socioeconomic drought is described as a drought that influences both the supply and demand for economic 

products. The lines between various types of droughts are indistinct and occasionally interchangeable [45]. 

 

Drought and environmental degradation pose significant risks to the long-term development of the world 

special Africa, as a large portion of the African continent (12.933 million km2) is classified as desert or 

dryland, making it particularly vulnerable to these drought issues [40]. These issues can lead to resource 

depletion and land degradation, which in turn can contribute to poverty, political instability, food insecurity, 

and economic downturns in the region [1]. The Horn of Africa is particularly prone to persistent droughts, 

which can harm the ecosystem and natural resources in the region [7]. 

 

For instance, Djibouti, Eritrea, Ethiopia, Somalia, and Kenya were all affected by one of the region's worst 

droughts in the summer of 2011 [23]. Because of this, annual agricultural production declined, the number 

of animals that died was high, and the price of food increased [20]. Somalia experienced famine as a result 

of the drought, unlike many East African countries, which were affected by the drought's effects on 

agricultural production. Ten million people were affected by severe food shortages as a result of the 2011 

drought, and many of them perished from starvation [38]. 

 

The 2016–2017 drought in Somalia has had severe effects on the ecosystem. During the one-year drought, 

natural standing vegetation lost almost 68% of its area (113,282 km2) or 18% of the country's entire 

landmass. Overall, the drought cost the environment around 564.8 million USD in losses and damages [56] 

 

To overcome the negative impact of drought, forecasting and predicting drought becomes very essential 

since it plays a particularly vital role in risk reduction and management promptly [39], [55]. Accurate 

drought forecasting is a crucial aspect of drought management, as incorrect forecasting can lead to 

ineffective management and even harm the environment. So, there is a need for rapid, precise, and accurate 

drought forecasting models that can provide quantitative data on future drought risks [13], [47], [51]. These 

models can utilize a combination of input components or drought indices to accurately forecast droughts (R. 

[61]. The most often used data-driven models in the domain of drought forecasting are machine learning 

(ML) models, which are a subset of artificial intelligence [52], [58]. ML models include artificial neural 

networks (ANN), Extreme Learning Machine (ELM), Random Forest (RF), and Support Vector Regression 

(SVR) among others. Several drought index (Dis) have been developed to monitor drought conditions (R. 

[61], among all, Standardized Precipitation Index (SPI) is a widely used drought indicator that is 

characterized by its statistical rigor and comprehensive approach [52]. Its simplicity and ease of use, as well 

as its independence from weather conditions, make it a valuable tool for drought prediction [27]. The SPI is 

calculated using a statistical analysis of precipitation data, and it is expressed as a standardized value on a 

scale from -3 to +3, with negative values indicating drought conditions and positive values indicating 

above-normal precipitation [27]. SPI is also often used in conjunction with other drought monitoring and 

forecasting tools, such as satellite imagery and hydrological models, to provide a more comprehensive view 

of drought conditions [33], [41], [44]. 

http://www.gkyj-aes-20963246.com/
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In the context of drought forecasting using ML, there have been several research papers that have compared 

the performance of different ML techniques using different DIS. [58] indicated that the ELM model 

forecasted better than RF, M5 Tree for predicting the SPI drought index at 3,6,9, and 12 months timescale. 

Other studies have found different results. [6] revealed that ANN is better than SVM in forecasting the 

drought index in Nigeria. Similarly, [63] in China compared several ML models and autoregressive 

integrated moving average (ARIMA) for predicting drought, the findings revealed that ARIMA statistical 

model forecasted better than wavelet neural network (WNN) and SVM. In contrast, [3] compared different 

ML adaptive neuro-fuzzy inference system ((ANFIS), ANN and SVN for drought forecasting in Algeria. 

The study indicated that SVM performed well compared to other models with R2 0.90. As we encountered 

yet, a few studies have investigated the occurrence of drought in Somalia [2], [46], Much previous research 

on drought in Somalia [30], [43] focused on crisis management rather than investigating drought occurrence 

patterns and geographical distribution. Others have investigated how drought affects fodder supply and 

drought risk reduction in urbanizing east African environments [26], [54]. So, it is necessary to develop 

drought forecasting and monitoring models that can provide timely measures to mitigate drought-related 

risks. Accurate drought forecasting is a crucial aspect of drought management, as incorrect forecasting can 

lead to ineffective management and even harm the environment. However, no study has been documented 

that utilizes and compares different ML approaches for drought forecasting in Somalia. 

 

The present study aims to address the issue of drought forecasting in Somalia, giving attention to the 

importance of long-term forecasting for the planning and management of natural droughts. The objective of 

this study is to analyze the accuracy and usefulness of the three machine learning models - ELM, RF, and 

SVR for predicting drought in Somalia. 

 

2. Study area 

The Hiran region of Somalia is located in the central part of the country and is known for its long periods of 

drought as well as flash floods (Fig. 1). The region is primarily rural and agricultural, with a large portion of 

the population dependent on farming and pastoral activities for their livelihood. The area's economy heavily 

relies on rain-fed agriculture and livestock, so the lack of sufficient and predictable rainfall is one of the 

main reasons for poverty and food insecurity in the region. The region also has a semi-arid and arid climate. 

The irregularity of rain, along with its high variability, makes drought and flash floods in the area common. 

This also results in a higher risk of failure of agricultural and pastoral production, which can lead to food 

insecurity. 

 

The Hiran region is a typical example of the complexity of the drought-flood cycles that affects many semi-

arid and arid regions, in which drought and flood hazards often co-occur, requiring an integrated approach 

that considers both. 

 

3. METHODS AND MATERIALS 

 

3.1 Data Sources 

Statistical drought prediction needs long-term records spanning at least 30 years are necessary which does 

not accommodate data gaps. Remote sensing data was used in this study rather than using ground station 

data due to insufficient ground station data in Somalia. The current ground station data in Somalia was 

established in 2002 by Food and Agriculture Organization Somali Water and Land information 

management (FAO SWALIM). This data have no consistent temporal and spatial distribution throughout 

the country, this limited the usage of ground station data for training machine learning models. To tackle 

this problem, satellite data was used to forcest drought in the Hiran region, Somalia. The CHIRPS data is an 
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IR-based weather precipitation dataset having high-level spatial resolution (0.05° × 0.05°) with long-term 

records (1981–present), the dataset produces three outputs including gauge observations having different 

temporal resolutions namely, yearly, monthly, and daily, satellite estimates and global climatology [21]. 

Many studies indicated that the CHIRPS satellite dataset is suitable for describing the spatial distribution of 

precipitation and able to capture the occurrence and characteristics of drought events, suggesting that the 

CHIRPS dataset could be used as an alternative precipitation source for monitoring drought [22], [42], [50], 

[57]. Furthermore, there were a significant number of studies used CHIRPS as data set for machine learning 

models [5], [10], [24], [36], [37], [53], [59], [62]. In this study, the CHIRPS precipitation dataset for 1981–

2021 was obtained from CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations | Climate 

Hazards Center - UC Santa Barbara (ucsb.edu). 

 

Table 1 she classification of drought index SPI distribution [28]. 

SPI value   Drought category 

(2.0, þ∞) 

 

Extremely wet 

(1.5, 2.0] 

 

Severely wet 

(1.0, 1.5] 

 

Moderately wet 

(–1.0, 1.0] 

 

Normal 

(–1.5, –1.0] 

 

Moderately drought 

(–2.0, –1.5] 

 

Severely drought 

(–∞, –2.0]   Extremely drought  
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Fig. 1 Hiran region, Somalia 

 

3.2 Methods 

3.2.1 SPI Computation 

The Standardized Precipitation Index (SPI) is a widely used method for measuring droughts and has been 

implemented in numerous drought forecasting scenarios using machine learning algorithms [28]. The World 

Meteorological Organization recommends the SPI as it provides a consistent measure of precipitation 

deficiency [31]. In this study, the SPI was used to measure droughts in the Hiran region, Somalia using the 

CHIRPS dataset over the past 40 years (1981-2021). The SPI is calculated by fitting the precipitation data 

series to a gamma probability density function and then transforming it to a regular distribution using an 

inverse normal function to yield the cumulative probability [14], [34]. This method allows for a consistent 

and reliable assessment of drought conditions in a specific region. 

 

The SPI values can then be set as follows: 

 

𝑺𝑷𝑰 =   − (𝒕 −  
𝒄𝟎 +  𝒄𝟏𝒕 + 𝒄𝟐𝒕𝟐

𝟏 + 𝒅𝟏𝒕 + 𝒅𝟐𝒕𝟐 + 𝒅𝟑𝒕𝟑) ;  𝒕 =  √ 𝒍𝒏 
𝟏

(𝑯(𝒙))𝟐  ;  𝟎 < 𝑯(𝒙)  ≤  𝟎. 𝟓    (1)          

 

𝑺𝑷𝑰 = 𝒕 −
𝒄𝟎 +  𝒄𝟏𝒕 + 𝒄𝟐𝒕𝟐

𝟏 + 𝒅𝟏𝒕 + 𝒅𝟐𝒕𝟐 + 𝒅𝟑𝒕𝟑 
;  𝒕 =  √ 𝒍𝒏

𝟏

(𝟏−𝑯(𝒙))𝟐  ;  𝟎. 𝟓 < 𝑯(𝒙)  ≤  𝟏     (2)        

 

where “x” represent monthly rainfall, the values of c0, c1 and c2 are (2.515517, 0.802853, and 0.010328) 

respectively and the values of d1, d2 and d3 are (1.432788, 0.189269 and 0.001308) respectively. “H(x)” 

represents the average probability of the series in the gamma distribution function [49]. The gamma 
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distribution is expressed as follows:  

 

𝒈(𝒙) =  
𝟏

𝜷𝜶𝚪(𝚪)
𝒙𝒂−𝟏𝒆−𝒙/𝜷−𝟏

; 𝒙 > 𝟎         (3) 

 

where “α” and “β” represent the shape and the scale parameters respectively, and Γ(α) is the main function 

in the gamma distribution. 

 

The study calculated several SPI time scales (1,3,6,9,12). The drought severity, moderateness and wetness 

SPI value are shown in Table 1 [14], [28]. 

 

3.2.2 Extreme Learning Machine (ELM) 

Extreme learning machine (ELM) is a type of artificial neural network that was introduced by [25]. It is a 

single-hidden-layer feedforward neural network that has been shown to have good generalization 

performance and fast training times compared to other types of neural networks. 

 

 
Fig. 2 ELM network structure [25] 

 

ELM is a feedforward neural network that consists of an input layer, one or more hidden layers, and an 

output layer. It differs from traditional feedforward neural networks in that the weights of the hidden layer 

are randomly generated and not adjusted during the training process. Instead, the output weights are learned 

through a least-squares optimization process. This allows ELM to achieve faster training times compared to 

traditional neural networks, as the optimization process is simpler and requires fewer iterations [28]. One of 

the main advantages of ELM is that it can achieve good generalization performance with relatively small 

training datasets. It has also been shown to be robust to overfitting and can handle high-dimensional inputs 

effectively. However, ELM can be sensitive to the choice of hidden layer parameters and may not always 

outperform traditional neural networks in terms of accuracy [28]. 

 

The mathematical function of the ELM model may be represented as follows [28]: 

 

∑ 𝜷𝒊𝒈(𝒙𝒏, ;  𝒃𝒊, 𝒘𝒊)  =  𝒚𝒏;  𝒏 =  𝟏, 𝟐, 𝟑, … , 𝐍𝑴
𝒊=𝟏        (4) 

 

According to the above ELM network equation, ‘bi’ represents the randomly assigned bias of the ith hidden 

node, while ‘wi’ is the randomly assigned weight of the input vector connecting the ith hidden neuron to the 

input data. The weight vector connects the ith hidden node to the output neuron, and ‘g(Xn ; bi , wi)’ 

represents the output result of the xn input sample associated with the ith hidden node. Each input is 
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randomly distributed to the hidden nodes in the ELM networks. Then, it is possible to write Eq. (4) as: 

 

𝑯𝜷 = 𝒀            (5) 

Where: 

 

𝑯 =  [
𝒈(𝒙𝟏, ;  𝒃𝟏, 𝒘𝟏)  … 𝒈(𝒙𝟏, ;  𝒃𝑴, 𝒘𝑴)

𝒈(𝒙𝟏, ;  𝒃𝟏, 𝒘𝟏)  … 𝒈(𝒙𝟏, ;  𝒃𝑴, 𝒘𝑴)
]

 
𝑵 × 𝑴      (6) 

 

𝑯𝜷 = (𝜷𝟏
𝑻, 𝜷𝟐

𝑻, … , 𝜷𝑳
𝑻)

𝑻
𝒎 × 𝑴

          (7) 

 

𝒀 = (𝒕𝟏
𝑻, 𝒕𝟐

𝑻, … , 𝒕𝑳
𝑻)

𝑻
𝒎 × 𝑴

          (8) 

 

According to [28], "H" represents the output matrix of the hidden layer and "T" represents the label matrix. 

is the output weights acquired by finding the least square solutions to the above-mentioned linear system 

[18]: 

 

𝜷 = 𝑯+𝒀            (9) 

 

[18] defines “H+“, as H’s matrix generalized inverse of Moore-Penrose. 

 

3.2.3 Random Forest (RF) 

Random forests are a type of machine learning algorithm that can be used for tasks involving classification 

and regression. They are made up of multiple decision trees that work together to make a prediction. This 

type of model is known as an ensemble model. The decision trees in a random forest are trained on a 

random subset of the data, and the final prediction is made by combining the predictions of all the trees 

through a voting process. Using multiple decision trees helps to reduce overfitting and improve the model's 

ability to generalize to new data. Essentially, each tree gets a "vote" on the final prediction, and the class or 

value that gets the most votes is chosen as the final prediction [11]. 

 

One of the main advantages of random forests is that they are very effective at handling large and complex 

datasets. They are also relatively simple to implement and can be used for both classification and regression 

tasks. They can also handle missing values and categorical variables, which makes them a useful tool for 

many different types of data [11]. However, one potential disadvantage of random forests is that they can be 

computationally intensive, particularly when the number of trees in the forest is large. This can make them 

less efficient than other models in some cases. Additionally, random forests can sometimes have difficulty 

with imbalanced datasets, where one class is significantly more prevalent than the other [11]. Overall, 

random forests are a powerful and widely-used machine learning technique that can be applied to a wide 

variety of problems. 
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Fig. 3 Random Forest Sample Trees 

 

3.2.4 Support Vector Machine (SVM) 

Support vector machines (SVM) are a type of supervised machine learning algorithm that can be used for 

both classification and regression tasks [15]. When used for regression, the SVM algorithm is called support 

vector regression (SVR) [15]. SVR works by finding the hyperplane in a high-dimensional feature space 

that maximally separates the data points of different classes (in the case of classification) or that best fits the 

data points (in the case of regression) [15]. The distance of the data points from the hyperplane, called the 

margin, is maximized in the process of finding the optimal hyperplane. The data points that lie on the 

margin, or close to it, are called support vectors [15]. One of the main advantages of SVR is that it can 

handle non-linear relationships between the input features and the target variable [12]. This is achieved by 

using a kernel function, which transforms the data into a higher-dimensional space where a linear separation 

is possible. Commonly used kernel functions include the linear, polynomial, and radial basis function (RBF) 

kernels [12]. 

 

The relationship among the input and output is in the equation [29]: 

 

𝒚 =  𝒇(𝒙) =  𝒘 ∗ 𝒙𝒋 + 𝒃          (10) 

 

In this equation, w is the weight, b is the bias, and xj is the input features. To determine the values of w and 

b, the following optimization problem is solved: 

 

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 
𝟏

𝟐
||𝒘||𝟐 + 𝑪 ∑ (𝛏 𝐢 +  𝛏 𝐢 ∗)𝒍

𝒊=𝟏        (11) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 { yi − <  𝑤, 𝑥𝑗 > − 𝑏 ≤  𝜀 +  𝜉𝑖   

  < 𝑤, 𝑥𝑗 > +𝑏 − 𝑦𝑖 ≤ ε +  ξi ∗  

  𝛏 𝐢, 𝛏𝐢 ∗≥  𝟎, 𝐢 =  𝟏, 𝟐, 𝟑. . . 𝐍}       (12) 

 

In this equation, C is a constant, ξi and ξi* are slack variables, and ε is the boundary value. Several types of 

kernels can be used in Support Vector Regression, including linear, polynomial, radial basis function (RBF), 

and sigmoid. The present study used RBF kernel function. 
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Fig. 4 Support Vector Machine (figure # is not in text) 

 

3.2.5 Criteria of Performance Evaluation 

Various performance criteria were used in this study for machine learning models comparison including, 

root-mean-square error (RMSE), determination coefficient (R2) and mean absolute error (MAE). These 

criteria are calculated according to following Equations [4], [16] 

 

𝐑𝐌𝐒𝐄 =  √
𝟏

𝐍
∑ (𝐒𝐏𝐈𝟏𝟐 𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝 − 𝐒𝐏𝐈𝟏𝟐 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝)𝐍

𝐢=𝟏      (13) 

 

𝐌𝐀𝐄 =  
𝟏

𝐍
∑ |(𝐒𝐏𝐈𝟏𝟐 𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝 − 𝐒𝐏𝐈𝟏𝟐 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝)|𝐍

𝐢=𝟏      (14) 

 

𝐑𝟐 = 𝟏 −  
∑ (𝐒𝐏𝐈𝟏𝟐 𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝−𝐒𝐏𝐈𝟏𝟐 𝐏𝐫𝐞𝐝𝐢𝐜𝐭𝐞𝐝)𝐍

𝐢=𝟏

∑ (𝐒𝐏𝐈𝟏𝟐 𝐎𝐛𝐬𝐞𝐫𝐯𝐞𝐝−𝐒𝐏𝐈𝟏𝟐 𝐦𝐞𝐚𝐧)𝐍
𝐢=𝟏

       (15) 
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Fig. 5 (a) SPI_1, (b) SPI_3, (c) SPI_6 (d) SPI_9 (e) SPI_12 

 

4. RESULTS AND DISCUSSION 

 

4.1 Drought intensity, duration and frequency using SPI. 

Drought index such as SPI are good for analysing drought distribution according to their location and time 

occurred. In this study, five timescales (in months) were chosen for drought evaluation i.e., SPI-1, SPI-3, 

SPI-6, SPI-9 and SPI-12. The various timescales taken quantify the precipitation deficit in the study area 

which indicate the effect of drought on available water resource forcing decision makers to take immediate 

mitigation actions. Fig. 5 (a to e) shows the duration, sequence, and severity of drought, the blue colour 

indicates wet events while red colour shows dry period. Fig 5(a & b) indicates SPI at 1and 3-month 

timescale. This timescale is called short-term timescale [9] the precipitation variability is high due to fewer 

months data compared with SPI-6,9,12 months Fig. 5(c,d and e). In SPI 6,9, and 12 months, the 

accumulation values of SPI are 6, 9 and 12 months, respectively which results smoother time-series with 

less variation. Generally, lead time or scale time is direct proportional with drought duration and inversely 

proportional with drought frequency and intensity [35]. Based on SPI-12, the extremely drought event 

occurred (SPI= -2.78) between April-September 2011, while in SPI-6 and SPI-9 the extremely drought 

event observed in November 2010 to April 2011 and January 2011 to July 2011, respectively with same SPI 

value (SPI= -3.2) (Fig 5, c-e).  This indicates that detection of drought depends on timescale used. SPI 

managed to identify drought events. For instance, SPI-12 effectively identified April to September 2011 

drought event as other studies indicated so [8], [19]. 

 

4.2 Machine learning models comparison 

This study evaluates the performance of three machine-learning i.e.  ELM, RF and SVR model in predicting 

monthly long-term standardized precipitation index SPI-12. The study used SPI time scales (SPI-1, SPI-3, 

SPI-6 and SPI-9) from 1980 to 2021 as input variables of the trained model to predict SPI-12.  The monthly 

SPI data is partitioned into 70% and 30% for training and testing sets, respectively, the training set is 
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employed to train ELM, RF, and SVR models. In addition, the study assessed the performances of the three 

ML ELM, RF and SVR models in predicting SPI-12 using MAE, RMSE, and R2 as indicator parameters. 

For SPI drought prediction, the ML model having R2 close to 1 and RMSE and MAE near to 0 was chosen 

the best model.  

 

Table 2, indicates the performance of the three ML models ELM, RF and SVR using several performance 

RMSE, MAE and R-squared. In the training set, The RMSE value of the ELM, RF and SVR models were 

found 0.417, 0.494, and 0.412, respectively. The mean absolute error (MAE) for the ELM, RF and the SVR 

models are found to be 0.410, 0.378, and 0.344, respectively. The coefficient-of-determination (R2) values 

for the ELM, RF and the SVR models are calculated as 0.704, 0.740, and 0.753, respectively. Support 

Vector Machine (SVR) for regression showed that it has the highest coefficient of determination (R2 = 

0.753), lowest root mean square error (RMSE = 0.488), and lowest mean absolute error (MAE = 0.344). 

Therefore, Support Vector Machine (SVR) for regression outperformed Random Forest (RF) and Extreme 

Learning Machine (ELM) for predicting SPI_12. 

 

Table 2 Presents the performance of ELM, RF and SVR models for predicting SPI_12 

Model Training     Model Testing   

  RMSE MAE R2    RMSE MAE R2 

ELM 0.417 0.304 0.822  ELM 0.568 0.410 0.704 

RF 0.494 0.364 0.754  RF 0.500 0.378 0.740 

SVR 0.412 0.284 0.826  SVR 0.488 0.344 0.753 

 

Moreover, the scatter plot SPI_12 predicted and SPI_12 observed of the test data for the SVR model shows 

better fit line in using these three ML models. The scaterplots in Figure 6 a), b) and c) show how the three 

ML models ELM, RF and SVR respectively predict the SPI12. 
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Fig. 6 (a), (b), (c) scatter plots of SPI_12 predicted and SPI_12 observed of the test data for the ELM, RF, 

and SVR respectively model 

 

Table 3 below shows the evaluation performance of ELM, RF and SVR using the regression equation. 

 

𝑆𝑃𝐼12_𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑚 ∗ 𝑆𝑃𝐼12_𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑      (13) 

 

The models listed in Table 3 have a slope of the best-fitted line ‘m’ of the estimated SPI-12, intercept ‘c’ of 

each model and the ‘R2’ coefficient of determination of each model which shows the goodness of each 

model. The coefficient of determination ranges between 0 and 1. The closer R2 of 1 indicates a high R2 

which implies a better fit.  The three ML models ELM, RF and SVR show high R2 of 0.704, 0.740 and 

0.753 respectively with slope line of 0.822, 1.042 and 0.952 respectively. 

 

Table 3 Regression equation (SPI12predicted = m*SPI12observed + c) performance of the ELM, RF and 

SVR models using test data. 

  m R2 r C 

ELM 0.822 0.704 0.839 0.086 

RF 1.042 0.740 0.860 0.011 

SVR 0.952 0.753 0.868 0.031 

 

The study also compared the performance of the three models. Figure 7 shows the performance comparison 

of ELM, RF and SVR in the test set data using monthly SPI-12 observed and SPI-12 predicted. The plot 

reveals that the predicted SPI-12 of the test data of all three models were smoothly fit to the observed 

monthly SPI-12. 
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Fig. 7 Compares SPI_12 predicted for ELM, RF and SVR models versus observed SPI_12 

 

5. CONCLUSION 

The main purpose of this paper is to assess the performance of three machine learning algorithms to predict 

the Long- term standardized precipitation index (SPI-12) in Hiran, Somalia. Machine-learning models such 

as Extreme-Learning-Machine (ELM), Random-Forest (RF), and Support-Vector-Machine for Regression 

(SVR) were examined using monthly rainfall data from 1980–2021. Four SPI time scales (SPI1, SPI3, SPI6, 

and SPI9) were used as input variables for predicting SPI12. R programming software were used to predict 

SPI12 using the three ML models ELM, RF and SVR. It is observed that the Support Vector Machine 

(SVR) for regression has the highest value of R2 of 0.753 and the lowest value of RMSE of 0.488. The 

results also showed that the three models were able to accurately predict drought events in the study area, 

with the SVM model performing slightly better than the ELM and RF models. The study observed low 

RMSE and high R2 in prediction SPI- 12. However, the findings of the SVR show the good performance in 

the training models, with the highest R2 (0.826) and minimal RMSE (0.412) values, and R2 (0.753) and 

minimal RMSE (0.488) during testing set data in forecasting the SPI-12. 

 

In conclusion, machine learning has shown to be a promising approach for drought forecasting in Hiran, 

Somalia, as it can effectively analyze complex meteorological data and make accurate predictions of 

drought events. However, further research is needed to improve the performance of machine learning 

models and to assess their potential for use in drought early warning systems in the region. 
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