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Abstract 

Background  Malnutrition poses a substantial challenge in Somalia, impacting approximately 1.8 million children. 
This critical issue is exacerbated by a multifaceted interplay of factors. Consequently, this study seeks to examine 
the long-term and short-term effects of armed conflicts, food price inflation, and climate variability on global acute 
malnutrition in Somalia.

Methods  The study utilized secondary data spanning from January 2015 to December 2022, sourced from relevant 
databases. Two distinct analytical approaches were employed to comprehensively investigate the dynamics of global 
acute malnutrition in Somalia. Firstly, dynamic autoregressive distributed lag (ARDL) simulations were applied, allow-
ing for a nuanced understanding of the short and long-term effects of armed conflicts, food price inflation, and cli-
mate variability on malnutrition. Additionally, the study employed kernel-based regularized least squares, a sophisti-
cated statistical technique, to further enhance the robustness of the findings. The analysis was conducted using STATA 
version 17.

Results  In the short run, armed conflicts and food price inflation exhibit positive associations with global acute mal-
nutrition, particularly in conflict-prone areas and during inflationary periods. Moreover, climatic variables, specifically 
temperature and rainfall, demonstrate positive associations. It is important to note that temperature lacks a statisti-
cally significant relationship with global acute malnutrition in the short run. In the long run, armed conflicts and food 
price inflation maintain persistent impacts on global acute malnutrition, as confirmed by the dynamic ARDL simula-
tions model. Furthermore, both temperature and rainfall continue to show positive associations with global acute 
malnutrition, but it is worth noting that temperature still exhibits a non-significant relationship. The results from ker-
nel-based regularized least squares were consistent, further enhancing the robustness of the findings.

Conclusions  Increased armed conflicts, food price inflation, temperature, and rainfall were associated with increased 
global acute malnutrition. Strategies such as stabilizing conflict-prone regions, diplomatic interventions, and peace-
building initiatives are crucial, along with measures to control food price inflation. Implementing climate adapta-
tion strategies is vital to counter temperature changes and fluctuating rainfall patterns, emphasizing the need 
for resilience-building. Policymakers and humanitarian organizations can leverage these insights to design targeted 
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interventions, focusing on conflict resolution, food security, and climate resilience to enhance Somalia’s overall nutri-
tional well-being.

Keywords  Global acute malnutrition, Food price inflation, Armed conflicts, Climate variability, Somalia

Background
Malnutrition remains a pressing global health concern, 
particularly in regions afflicted by food insecurity, armed 
conflicts, and climate variability [1–3]. Somalia, one of 
the countries with the highest child and maternal mor-
tality rates [4], exemplifies a nation grappling with these 
interrelated challenges. Moreover, it stands as the lowest-
ranked country on the food security index, facing the 
daunting reality of having the highest rate of acute mal-
nutrition in the world [4]. According to recent statistics 
from the Integrated Food Security Phase Classification 
(IPC), approximately 1.8 million children under the age 
of five in Somalia suffered from acute malnutrition in 
2023, with the country facing one of the highest burdens 
of malnutrition globally [5]. Understanding the dynamics 
of acute malnutrition in such complex environments is 
crucial for effective policy formulation and intervention 
strategies.

The relationship between food price inflation and mal-
nutrition has been extensively studied in the literature. 
High food prices can exacerbate food insecurity, limiting 
access to nutritious foods, especially among vulnerable 
populations. Studies like Headey & Ruel [6] and Brink-
man et al. [7] highlight the strong link between food price 
inflation and malnutrition, particularly in children. As 
food prices rise, especially staples, households struggle to 
afford enough nutritious food, leading to inadequate cal-
orie intake and increased risk of wasting and stunting. As 
highlighted by Homeida [8] and Kinyoki et al. [9], fragile 
settings such as Sudan and Somalia face a critical food 
security situation compounded by conflict and economic 
factors. This has significant consequences for vulnerable 
groups like pregnant women and young children, where 
increased conflict events contribute to increased wasting 
and stunting rates [9].

Armed conflicts disrupt food systems, exacerbate 
poverty, and displace populations, significantly impact-
ing nutritional outcomes, particularly among chil-
dren. Numerous studies have documented the adverse 
effects of armed conflicts on malnutrition, emphasiz-
ing the role of conflict-induced displacement, destruc-
tion of infrastructure, and disruption of livelihoods. 
For instance, research by Howell et al. [10], Dahab et al. 
[11], and Kinyoki et al. [9] highlighted how armed con-
flict disrupts food systems and exacerbates malnutri-
tion. Conflict directly damages agricultural production, 
destroys infrastructure, and displaces communities, 

leaving them vulnerable to hunger and undernutri-
tion. This is evident in Somalia, where prolonged con-
flict has devastated livelihoods and increased reliance 
on humanitarian aid [9]. The complex and intercon-
nected nature of conflict’s impact is emphasized by 
Dahab et al. [11], who found that while conflict signifi-
cantly increases malnutrition risk, addressing broader 
socio-demographic factors remains crucial for effective 
interventions.

Climate variability, including extreme weather events 
such as droughts and floods, poses substantial chal-
lenges to food security and nutrition, particularly in 
agrarian societies like Somalia. Studies have high-
lighted the adverse effects of climate variability on crop 
production, livestock health, and water availability, 
consequently influencing food access and nutritional 
outcomes. For instance, research by Mank et  al. [12], 
Thiede and Gray [13], and Elayouty et  al. [14] shed 
light on the intricate relationship between climate 
variability and malnutrition. Droughts, floods, and 
extreme weather events disrupt agricultural produc-
tion, reduce food availability, and alter dietary patterns, 
often impacting children the most, as demonstrated by 
Mank et al. [12]. In Somalia, where water resources are 
scarce and droughts frequent, climate variability poses 
an additional threat to food security and nutritional 
health. Elayouty et  al. [14] highlight the need for geo-
graphically specific interventions and adaptable risk 
management strategies to address the varying impacts 
of climate change on malnutrition across regions.

While existing literature offers valuable insights into 
the impacts of food price inflation, armed conflicts, and 
climate variability on global acute malnutrition, there 
exists a significant gap in understanding within the con-
text of Somalia, where research on this topic is notably 
limited. Previous global studies have examined the indi-
vidual effects of food price inflation, climate change, 
and conflict on malnutrition, yet few have integrated 
all these variables simultaneously into comprehensive 
models. This study aims to fill this gap by employing 
advanced econometric techniques capable of predict-
ing both short-run and long-run effects. Specifically, 
the study utilizes dynamic AutoRegressive Distributed 
Lag (ARDL) simulations and kernel-based regularized 
least squares, offering a more robust framework for 
understanding the intricate relationships between these 
factors and acute malnutrition in Somalia. By doing so, 
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this research facilitates evidence-based policymaking 
and targeted interventions in combating malnutrition 
in Somalia.

Motivation and research question
In recent years, Somalia has faced persistent challenges 
related to global acute malnutrition, exacerbated by 
a combination of factors such as food price inflation, 
armed conflicts, and climate variability. Understanding 
the interplay between these variables is crucial for devis-
ing effective interventions to mitigate malnutrition rates 
and improve the overall well-being of the population. 
Therefore, the motivation behind this study is to inves-
tigate the short and long-term effects of food price infla-
tion, armed conflicts, and climate variability on global 
acute malnutrition in Somalia.

The primary research question guiding this study is: 
How do food price inflation, armed conflicts, and climate 
variability collectively influence global acute malnutri-
tion in Somalia over both short and long-term periods? 
By examining this question, the study aims to elucidate 
the specific mechanisms through which these factors 
interact to affect malnutrition rates. Furthermore, the 
research explores potential interventions and policy rec-
ommendations aimed at mitigating the adverse effects 
of food insecurity, conflict, and climate change on nutri-
tion outcomes in Somalia. By addressing these criti-
cal issues, this study seeks to contribute to the broader 
discourse on humanitarian aid and development efforts 
in conflict-affected regions, ultimately striving towards 
improved health outcomes and resilience among vulner-
able populations.

Methods
Data source
The data used in this study covered the period from 
January 2015 to December 2022, providing a total of 96 
observations. These data were obtained from diverse and 
reputable sources to comprehensively examine the intri-
cate dynamics of armed conflicts, food price inflation, 
and climate variability in shaping global acute malnutri-
tion in Somalia. The confirmed cases of global acute mal-
nutrition (GAM) were obtained from the Food Security 
and Nutrition Analysis Unit (FSNAU), ensuring a reli-
able and comprehensive dataset on malnutrition cases in 
Somalia. Armed conflict data, crucial for understanding 
conflict-related impacts on malnutrition, was sourced 
from the Armed Conflict Location and Event Data Pro-
ject (ACLED). Economic factors influencing malnutrition 
rates, particularly food price inflation, were extracted 
from the World Bank dataset, providing essential indi-
cators for a comprehensive analysis. Climate-related 

variables, including temperature and rainfall, were 
derived from the Climate Research Unit Time Series 
(CRU TS) and Climate Hazards Group InfraRed Pre-
cipitation with Station (CHIRPS) datasets, respectively. 
Food price inflation and climatic variables, such as tem-
perature and rainfall, were not aggregated by authors as 
they are available in monthly time series format from 
the relevant databases. The reported daily armed con-
flicts were aggregated by month, and monthly GAM con-
firmed cases by district. These sources collectively offer 
a robust foundation for exploring the complex relation-
ships underlying global acute malnutrition in Somalia.

To preprocess the data for analysis, the study utilized 
natural logarithm form to reduce the variability within 
the variables. Also, the augmented Dickey–Fuller (ADF), 
and Phillips–Perron (PP) unit root tests were used to 
obtain the integration order of series.

Statistical analysis
ARDL model and ARDL bounds testing approach
Autoregressive distributed lag (ARDL) model is a regres-
sion framework commonly used in econometrics to 
analyze the long-run relationships between variables, 
particularly in time series data. It is a flexible and widely 
used tool, particularly for investigating issues such as co-
integration and causality. The ARDL model offers several 
advantages compared to conventional approaches for 
testing co-integration [15]. Firstly, it accommodates sce-
narios where variables exhibit a combination of station-
ary (I(0)) and non-stationary (I(1)) behavior. Secondly, it 
enables the simultaneous estimation of both short-term 
and long-term relationships among variables through the 
ARDL bound testing procedure. Moreover, the ARDL 
model addresses endogeneity concerns by incorporating 
lags of both dependent and independent variables within 
the model structure. On the other hand, the ARDL model 
is not without limitations. Firstly, the ARDL model 
assumes linear and symmetric adjustment speeds [16]. 
Secondly, while the ARDL model attempts to address 
endogeneity by including lagged values of both depend-
ent and independent variables, it may not fully capture 
all sources of endogeneity [17]. Lastly, if the variables are 
highly persistent or exhibit higher orders of integration, 
the ARDL model may not provide reliable results [17].

The ARDL bounds testing technique, developed by 
Pesaran et  al. [18], is designed to examine long-term 
relationships among variables with a mixed integration 
order, specifically I(1) or I(0), excluding I(2). The depend-
ent variable must exhibit an integrated order of I(1) in 
this methodology. Subsequently, the unconstrained error 
correction model is applied to assess the cointegration of 
the variables once these criteria are satisfied.
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Here, Δ represents the difference operator, δ1 denotes 
the intercept, and a, b, c, d, and e represent the selected 
optimal lags. Short-run coefficients are denoted by β1, β2, 
β3, β4, and β5 while γ1, γ2, γ3, γ4, and γ5 illustrate the long-
run coefficients. The term εt represents the residual.

In Case II, involving restricted intercept and no trend, 
the alternative and null hypotheses are formulated as 
follows:

Null Hypothesis (H0): δ1 = γ1 = γ2 = γ3 = γ4 = γ5 = 0.
Alternative Hypothesis (Ha): δ1 ≠ γ1 ≠ γ2 ≠ γ3 ≠ γ4 ≠ γ5 
≠ 0.

Refutation of the null hypothesis, indicating cointe-
gration, occurs if the estimated F-statistic surpasses the 
critical values’ upper bounds determined by Pesaran et al. 
[18]. Conversely, if the F-statistic does not exceed these 
critical values, it suggests the absence of a long-term 
cointegration among the variables.

Dynamic ARDL simulations
Complex specifications, encompassing first differences, 
lagged differences of variables, and diverse lag struc-
tures, are commonplace in ARDL modeling. In simpler 
terms, evaluating the long- and short-run impacts of 
regressors on the dependent variable proves challenging 
when utilizing an ARDL model with first differences and 
multiple lag lengths. To alleviate this challenge, Jordan 
and Philips [19] introduced dynamic ARDL, integrat-
ing a dynamic error correction mechanism. Following 
the ceteris paribus principle, this approach facilitates 
the quantification and visual examination of the effects 
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of positive or negative shifts in an independent variable 
on the dependent variable. Consequently, the dynamic 
ARDL framework provides a comprehensive assessment 
of the relationship between dependent and independent 
variables.

Two prerequisites must be met for the dynamic model’s 
application: the variables must have an integration order 
of I(1) and the the cointegration of the variables is essen-
tial [19]. The error correction equation of the dynamic 
ARDL model is expressed as follows:

with θ0 representing the constant term, π0 denoting the 
error correction term coefficient, τ1, τ2, τ3, and τ4 illus-
trating short-term coefficients, and π1, π2, π3, and π4 
representing long-term coefficients. The error term is 
depicted by εt.

Kernel‑based regularized least squares
Hainmueller and Hazlett [20] introduced the kernel-based 
regularized least squares approach, offering practical util-
ity in discerning causal-effect relationships by leveraging 
machine learning algorithms to implement pointwise 
derivatives. This methodology establishes a modeling 
framework that adeptly navigates the middle ground 
between the stringent generalized linear models and the 
more flexible yet challenging-to-interpret machine learn-
ing methods. The kernel-based regularized least squares 

can be expressed as minβ
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This method enhances the credibility of this study, offer-
ing a more comprehensive understanding of the intricate 
and dynamic relationships underpinning global acute 
malnutrition in Somalia. Regularization with the kernel-
based approach allowed for effective variable selection 
and model robustness, ensuring reliability in capturing 
underlying patterns and complexities. The regularization 
parameter (λ) controlled the trade-off between fitting the 
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data and preventing overfitting, emphasizing the model’s 
reliability.

Results
Preliminary analysis
To explore and describe the trends in the study vari-
ables, time series plots were used. Figure  1 shows the 
trend patterns in the transformed data using natural log 
transformation for global acute malnutrition (lngam), 
armed conflicts (lnconflicts), and food price inflation 
(lnfpi) over the period from January 2015 to December 
2022. The variables are logged to account for potential 
nonlinear relationships and better capture the underly-
ing patterns. The monthly observations reveal fluctua-
tions and trends in each variable. For instance, in the 
initial months of 2015, there is a steady increase in the 
logged global acute malnutrition cases (lngam), while 
armed conflicts (lnconflicts) show varying patterns 
with fluctuations. The food price inflation (lnfpi) has 
negative values that increase slowly, indicating a rising 
trend. Over subsequent years, the patterns continue to 
evolve. Noteworthy is the upward trend in global acute 
malnutrition cases from 2016 to mid-2017, followed 

by a period of stability and subsequent fluctuations. 
Armed conflicts exhibit fluctuations with intermittent 
peaks, and food price inflation shows periods of both 
rise and fall. The latter part of the dataset, from 2021 to 
2022, demonstrates an overall increase in global acute 
malnutrition, fluctuations in armed conflicts, and food 
price inflation reaching its peak around mid-2022.

Figure 2 illustrates the trend patterns in the transformed 
variables lntemperature, lnrainfall, lntemperature_sa, and 
lnrainfall_sa, representing the natural logarithms of tem-
perature, rainfall, seasonally adjusted temperature, and 
seasonally adjusted rainfall, respectively, over the period 
from January 2015 to December 2022. Seasonal adjust-
ments to temperature and rainfall account for their sea-
sonal patterns, showing distinct fluctuations over the 
observed periods. Throughout the period, the lntem-
perature and lnrainfall exhibit fluctuating patterns, indi-
cating variability in temperature and rainfall levels over 
the years. The seasonally adjusted temperature and rain-
fall follow a similar pattern, suggesting that the observed 
trend is not solely due to seasonal variations.
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Fig. 1  Time series plots of lngam, lnconflicts and lnfpi



Page 6 of 18Mohamed et al. Journal of Health, Population and Nutrition           (2024) 43:68 

Table  1 presents summary statistics for the study 
variables: lngam, lnconflicts, lnfpi, lntemperature_sa, 
and lnrainfall_sa. For lngam, the mean is 10.48, indi-
cating the average value, and the standard deviation is 
0.87, representing the amount of variation around the 
mean. The minimum and maximum values are 6.19 and 
11.81, respectively. The skewness is negative (−  1.46), 
suggesting a distribution that is skewed to the left, and 
the kurtosis is 7.40, indicating heavy tails and potential 
outliers. Similarly, for lnconflicts, the mean is 5.47, with 
a standard deviation of 0.17. The skewness is positive 
(0.18), indicating a slight right skewness, and the kur-
tosis is 3.55. For lnfpi, the mean is 0.04, with a stand-
ard deviation of 0.16, skewness of 1.44 (indicating right 
skewness), and kurtosis of 4.10. For lntemperature_sa, 
the mean is 3.31, with a standard deviation of 0.01, 
skewness of 0.42, and kurtosis of 5.55. Lastly, for lnrain-
fall_sa, the mean is 2.31, with a standard deviation of 

0.54, skewness of −  0.06, and kurtosis of 5.81. These 
statistics provide a comprehensive overview of the cen-
tral tendency, variability, and distribution shape for 
each variable, aiding in the interpretation of the data-
set. For the variables lngam, lnfpi, lntemperature_sa, 
and lnrainfall_sa, the p-values associated with the 
chi-squared statistics (111.5, 37.77, 28.87, and 31.55, 
respectively) are all extremely small (p < 0.001), reject-
ing the null hypothesis (Ho) that the data follows a nor-
mal distribution. For lnconflicts, the p-value is 0.4271, 
which is larger but still above the conventional signifi-
cance level of 0.05. Therefore, while lnconflicts does 
not show strong evidence of departure from normality, 
the other variables exhibit significant deviations from a 
normal distribution based on the Jarque–Bera test.

The correlation matrix, shown in Table  2, provides 
insights into the relationships among the study variables. 
The correlation coefficients, calculated using Spearman 
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Fig. 2  Time series plots of lntemperature and lnrainfall with seasonally adjusted series

Table 1  Summary statistics

Variable Mean Median Max Min SD Skewness Kurtosis J-B stat P-value

lngam 10.4829 10.6776 11.8085 6.1944 0.8743 − 1.4584 7.4023 111.5  < 0.001

lnconflicts 5.4727 5.4806 6.0064 5.017 0.1687 0.1764 3.5486 1.702 0.4271

lnfpi 0.0365 − 0.0202 0.47623 − 0.1393 0.1577 1.4355 4.0954 37.77  < 0.001

lntemperature_sa 3.3087 3.3082 3.3536 3.2652 0.0127 0.4154 5.5547 28.87  < 0.001

lnrainfall_sa 2.3063 2.2668 3.9155 0.0726 0.5398 − 0.0606 5.8057 31.55  < 0.001
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correlation due to the non-normal distribution of most 
variables, reveal several noteworthy patterns. There is 
a strong positive correlation between lngam and lnfpi 
(r = 0.7719, p < 0.01), suggesting that higher levels of food 
inflation are associated with increased global acute mal-
nutrition. Additionally, lngam and lnconflicts show a 
moderate positive correlation (r = 0.4615, p < 0.01), indi-
cating that areas with more conflicts may experience 
higher malnutrition. Moreover, there is a significant posi-
tive correlation between lnfpi and lnconflicts (r = 0.4278, 
p < 0.01), implying that higher levels of food price infla-
tion are associated with a greater likelihood of conflicts. 
The negative correlation between lntemperature_sa and 
lnfpi (r = −  0.2683, p < 0.01) suggests that as tempera-
tures decrease, food prices tend to increase. Other cor-
relations, such as lntemperature_sa with lnconflicts and 
lnrainfall_sa, are relatively weak and may not be statisti-
cally significant.

Unit root tests
Table  3 presents the results from unit root tests for the 
study variables using the augmented Dickey-Fuller (ADF) 
and Phillips–Perron (PP) tests. The tests are conducted 
at both the level and first difference, with consideration 
given to the presence of intercepts and trends. For the 
variable lngam, both ADF and PP tests consistently show 
statistical significance at the 1% level, indicating that 
global acute malnutrition does not exhibit a unit root. 
Similarly, lnconflicts, lntemperature_sa, and lnrainfall_sa 
do not display unit root characteristics, as evidenced by 
the highly significant test statistics. On the other hand, 
the variable lnfpi exhibits unit root characteristics, as 
indicated by non-significant ADF and PP test results, 
suggesting that food price inflation is not stationary. 
Overall, these variables show mixed orders of integration, 
either I(0) or I(1), indicating potential applications for the 
dynamic ARDL bounds testing approach.

Table 2  Correlation matrix

*, **, and ***Represent 1%, 5%, and 10% significant levels, respectively

Variables Lngam lnconflicts lnfpi lntemperature_sa lnrainfall_sa

Lngam 1.0000 – – – –

lnconflicts 0.4615*** 1.0000 – – –

lnfpi 0.7719*** 0.4278*** 1.0000 – –

lntemperature _sa − 0.1574 − 0.2476** − 0.2683*** 1.0000 –

lnrainfall_sa 0.1036 − 0.1242 − 0.0717 − 0.1976* 1.0000

Table 3  Results from unit root tests

* , **, and ***Indicate significance level at 10%, 5%, and 1%, respectively

ADF represents the augmented Dickey–Fuller test and PP represents Phillips–Perron test

Variable ADF PP

Level Level

Intercept Intercept and trend Intercept Intercept and trend

lngam − 3.153*** − 4.397*** − 2.770* − 4.234***

lnconflicts − 5.895*** − 6.803*** − 5.863*** − 6.806***

lnfpi 0.391 − 1.409 0.244 − 1.517

lntemperature_sa − 7.988*** − 8.504*** − 8.095*** − 8.559***

lnrainfall_sa − 7.474*** − 7.432*** − 7.495*** − 7.454***

First difference First difference

Intercept Intercept and trend Intercept Intercept and trend

lngam − 12.196*** − 12.130*** − 13.467*** − 13.379***

lnconflicts − 13.956*** − 13.879*** − 16.913*** − 16.803***

lnfpi − 8.608*** − 8.627*** − 8.601*** − 8.614***

lntemperature_sa − 15.919*** − 15.831*** − 21.062*** − 20.924***

lnrainfall_sa − 14.595*** − 14.524*** − 17.893*** − 17.776***
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Lag length selection
In Table  4, different lag lengths are assessed using vari-
ous criteria, and the optimal lag is determined to be lag 
3 based on the chosen likelihood ratio (LR) test. While 
the lag 1 model demonstrates the lowest values for infor-
mation criteria, such as Akaike information criterion 
(AIC), Hannan–Quinn information criterion (HQIC), 
and Schwarz Bayesian information criterion (SBIC), the 
decision to choose lag 3 is specifically supported by the 
likelihood ratio test, where the test statistic for lag 3 is 
49.495 with 25 degrees of freedom, yielding a p-value of 
0.002, indicating statistical significance. Therefore, lag 3 
is selected due to its superiority in the likelihood ratio 
test, even though it may not have the absolute lowest val-
ues for information criteria.

ARDL model selection and cointegration tests
The ARDL (1,3,0,0,3) model was selected as the optimal 
model using the AIC metric. The overall model fit in the 
ARDL model is reflected in the R-squared of 0.7427 and 
the adjusted R-squared of 0.7078. These values indicate 
that the model explains approximately 74.27% of the 
variance in the dependent variable, with the adjusted 
R-squared accounting for the number of predictors in the 
model. Then, the ARDL bounds cointegration test was 
conducted and the results are presented in Table  5 uti-
lizing critical values provided by Kripfganz and Schnei-
der [21]. The calculated F-test statistic is 5.799 is greater 
than the critical value for I(1) at the 1% significance level, 
and the associated p-value of 0.006 is below conventional 
thresholds, indicating the rejection of the null hypothesis 
of no cointegrating relationship at the level (H0) in favor 
of the alternative hypothesis that a level relationship 
exists (H1). Furthermore, the absolute t-test statistic of 
− 5.038 exceeds the I(1) critical value at the 1% level, and 
the p-value for the t-test is 0.004, reinforcing the rejec-
tion of the null hypothesis of no cointegrating relation-
ship in levels. These results collectively provide strong 
support for the presence of a cointegrating relationship 
between the variables.

ARDL model estimation
Table 6 presents the results of the ARDL model estima-
tion. The coefficient of −  0.4379 (p-value = 0.000) for 
lngamt−1 in the error correction term (ECT) indicates 
the speed of adjustment, suggesting that about 43.79% 
of the deviation from the long-run equilibrium is cor-
rected within one period. In the long-run (LR) equation, 
the coefficients represent the impact of a 1% increase in 
various factors on the dependent variable (global acute 
malnutrition). For example, a 1% increase in conflicts 
at lag 1 (lnconflictst−1) leads to an estimated increase 
of 4.5895% in global acute malnutrition. Similarly, a 1% 
increase in lnfpi at lag 1 (lnfpit−1), lntemperature_sa at 
lag 1 (lntemperature_sat−1), and lnrainfall_sat at lag 1 
(lnrainfall_sat−1) is associated with estimated increases of 
2.0525, 18.4940, and 0.8175% in the global acute malnu-
trition, respectively. In the short-run (SR) equation, a 1% 
increase in ∆lnconflicts leads to a 0.7830% increase in the 
global acute nutrition, and a 1% increase in ∆lnconflicts 
at lag 1 (∆lnconflictst−1) is associated with a decrease of 
1.2357% in the global acute malnutrition. Similarly, a 1% 
increase in ∆lnfpi leads to a 0.8988% increase in global 
acute malnutrition. The short-run coefficients also cap-
ture the effects of changes in temperature (∆lntempera-
ture_sa) and rainfall (∆lnrainfall), as well as their lags, 
on global acute malnutrition. Specifically, a one-percent 
increase in temperature is associated with an 8.0989% 
increase in global acute malnutrition, though the result 
is marginally insignificant at 5% with a p-value of 0.066. 
Similarly, a one-percent increase in rainfall leads to a 
statistically significant 0.2941% increase in global acute 
malnutrition.

Diagnostic checking
Table  7 presents the results of diagnostic statistical 
tests for the ARDL model, assessing various aspects of 
model validity. The Breusch Godfrey LM test with a chi-
square statistic of 0.896 and 1 degree of freedom yields 
a p-value of 0.8315, indicating that there is no evidence 
of serial correlation in the model residuals. This suggests 
that the residuals do not exhibit a systematic pattern of 

Table 4  Lag length criteria

*Indicates lag order selected by the criterion

Lag LL LR df p FPE AIC HQIC SBIC

0 198.176 – – – 1.0e−08 − 4.1995 − 4.1442 − 4.0624

1 414.585 432.82 25 0.000 1.6e−10* − .3605* − 8.0286* − 7.5382*

2 433.035 36.901 25 0.059 1.9e−10 − 8.2182 − 7.6097 − 6.7106

3 457.783 49.495* 25 0.002 1.9e−10 − 8.2127 − 7.3276 − 6.0198

4 469.581 23.597 25 0.543 2.6e−10 − 7.9257 − 6.7640 − 5.0476
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correlation, supporting the model’s appropriateness for 
capturing the relationships among the variables. White’s 
test for heteroskedasticity, with a chi-square statistic 
of 88.19 and 77 degrees of freedom, yields a p-value of 
0.1803, indicating the absence of heteroskedasticity in 
the residuals. The Cameron–Trivedi tests for skewness 

and kurtosis produce chi-square statistics of 11.37 (11 
degrees of freedom) and 1.19 (1 degree of freedom) with 
p-values of 0.4131 and 0.2761, respectively. These results 
suggest that the model residuals exhibit no significant 
skewness or kurtosis, meaning that residuals do not devi-
ate from normality. Additionally, as evidenced in Fig.  3 
and Fig.  4, the cusum and cusum squares of recursive 

Table 6  ARDL model estimation

*, **, and ***Indicate significance level at 10%, 5%, and 1%, respectively

Variable Coefficient Std. Error T P-value 95% CI

ECT lngamt−1 − 0.4379*** 0.0869 − 5.04 0.000 − 0.6109 − 0.2650

LR lnconflictst−1 4.5895*** 1.2112 3.79 0.000 2.1796 6.9995

lnfpit−1 2.0525** 0.8276 2.48 0.015 0.4059 3.6990

lntemperature_sat−1 18.4940* 10.5724 1.75 0.084 − 2.5418 39.5298

lnrainfall_sat−1 0.8175** 0.3483 2.35 0.021 0.1246 1.5104

SR ∆lnconflicts 0.7830** 0.3656 2.14 0.035 0.0556 1.5104

∆lnconflictst−1 − 1.2357** 0.4932 − 2.51 0.014 − 2.2170 − 0.2545

∆lnconflictst−2 − 0.5356 0.3655 − 1.47 0.147 − 1.2628 0.1915

∆lnfpi 0.8988** 0.3922 2.29 0.025 0.1185 1.6791

∆lntemperature_sa 8.0989* 4.3495 1.86 0.066 − 0.5553 16.7531

∆lnrainfall_sa 0.2941*** 0.1010 2.91 0.005 0.09313 0.4950

∆lnrainfall_sat−1 − 0.2159* 0.1177 − 1.83 0.070 − 0.4502 0.0184

∆lnrainfall_sat−2 − 0.2127** 0.0963 − 2.21 0.030 − 0.4043 − 0.0210

Constant − 34.0304** 15.7759 − 2.16 0.034 − 65.4196 − 2.6413

Table 7  Diagnostic statistical tests

Diagnostic test Chi-square statistic df P-value Conclusion

Breusch Godfrey LM test 0.896 1 0.8315 No serial correlation

White’s test 88.19 77 0.1803 No heteroskedasticity

Cameron-Trivedi test of skewness 11.37 11 0.4131 No skewness

Cameron-Trivedi test of kurtosis 1.19 1 0.2761 No kurtosis
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Fig. 3  Plot of cumulative sum of recursive residuals
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residuals are within acceptable limits, further affirming 
the stability and adequacy of the ARDL model.

Dynamic ARDL simulations model results
The dynamic ARDL simulation results in Table 8 reveal 
significant relationships between the global acute mal-
nutrition and various factors. In the lagged levels equa-
tion, a 1% increase in the global acute malnutrition at 
lag 1 (lngamt−1) is associated with a 0.4328% decrease 
in global acute malnutrition in the current period, indi-
cating a self-correcting mechanism. Furthermore, con-
flicts at lag 1 (lnconflictst−1) exhibit a positive impact 
on global acute malnutrition, with a 1% increase result-
ing in a 1.9082% increase in global acute malnutrition. 
Similarly, the food price inflation at lag 1 (lnfpit−1) 
shows a positive association, contributing to a 0.8724% 
increase in global acute malnutrition for a 1% increase. 
Temperature at lag 1 (lntemperature_sat−1) do not show 
statistically significant effect on global acute malnutri-
tion at 5% level of significance  while rainfall at lag 1 
(lnrainfall_sat−1) exhibits statistically significant effect.

In the short-run differences equation, changes in con-
flicts (∆lnconflicts), especially at lag 1 (∆lnconflictst−1), 
play a significant role. A 1% increase in ∆lnconflicts 
leads to a 0.7543% increase in global acute malnutrition, 
while a 1% increase in ∆lnconflictst−1 corresponds to a 
decrease of 1.2001% in global acute malnutrition. Food 
price inflation (∆lnfpi) and changes in temperature 
(∆lntemperature_sa) do not demonstrate statistically 
significant impacts on global acute malnutrition. How-
ever, changes in rainfall at lag 0 (∆lnrainfall_sa) have 
a significant positive effect, contributing to a 0.3010% 
increase in global acute malnutrition for a 1% change. 

Lagged changes in rainfall at lags 1 and 2 (∆lnrainfall_
sat−1 and ∆lnrainfall_sat−2) also show significance, with 
a negative impact on global acute malnutrition.

The dynamic ARDL model possesses a crucial capabil-
ity to simulate and predict counterfactual changes in the 
regressor, capturing the impact of shocks on global acute 
malnutrition. Each figure in the analysis represents a 10% 
increment or reduction in the regressor, holding all other 
factors constant. Dark blue dots signify the expected value, 
while the dark blue to light blue lines delineate confidence 
intervals at 75%, 90%, and 95%. The first trend line in the 
graph highlights short-term effects, while the horizontal 
line portrays long-term effects over time. Figure 5 reveals 
that a 10% alteration in armed conflicts has a noteworthy 
short-term impact on global acute malnutrition. Neverthe-
less, over time, a 10% increase in armed conflicts leads to a 
positive escalation in global acute malnutrition and a 10% 
decrease results in a reduction. This impact is more pro-
nounced in the long term due to the larger marginal rate of 
rise from the baseline. Figure 6 indicates that a 10% surge 
or decline in food price inflation lacks a significant short-
term effect on global acute malnutrition, while its influence 
becomes apparent in the long term. However, changes in 
food price inflation significantly affect global acute malnu-
trition in the long run, as evidenced by the dotted line’s ten-
dency to deviate from the baseline over time.

Moving on to Fig. 7, a 10% increase or decrease in sea-
sonally adjusted temperature has a substantial short- and 
long-term impact on global acute malnutrition. Despite 
both scenarios having a marginal effect on malnutrition, 
mitigating malnutrition can benefit more from a 10% 
decrease in temperature, while a temperature increase 
exacerbates the malnutrition situation in Somalia. 

Table 8  Dynamic simulated ARDL model estimation

*, **, and ***Indicate significance level at 10%, 5%, and 1%, respectively

Variable Coefficient Std. Error t P-value 95% CI

lngamt−1 − 0.4328*** 0.0880 − 4.92 0.000 − 0.6080 − 0.2578

lnconflictst−1 1.9082*** 0.6755 2.82 0.006 0.5635 3.2528

lnfpit−1 0.8724** 0.4122 2.12 0.037 0.0519 1.6929

lntemperature_sat−1 5.3247 5.8408 0.91 0.365 − 6.3011 16.9505

lnrainfall_sat−1 0.3541** 0.1632 2.17 0.033 0.0292 0.6790

∆lnconflicts 0.7543** 0.3768 2.00 0.049 0.0044 1.5043

∆lnconflictst−1 − 1.2001** 0.5068 − 2.37 0.020 − 2.2089 − 0.1913

∆lnconflictst−2 − 0.4491 0.3854 − 1.17 0.247 − 1.2162 0.3180

∆lnfpi 1.1530 1.9861 0.558 0.563 − 2.8003 5.1063

∆lntemperature_sa 8.5955* 4.5026 1.91 0.060 − 0.3667 17.5578

∆lnrainfall_sa 0.3010*** 0.1023 2.94 0.004 0.0974 0.5046

∆lnrainfall_sat−1 − 0.2213* 0.1190 − 1.86 0.067 − 0.4581 0.0156

∆lnrainfall_sat−2 − 0.2169** 0.0973 − 2.23 0.029 − 0.4106 − 0.0232

Constant − 24.3393 21.3393 − 1.16 0.250 − 66.1752 17.4966
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Additionally, Fig. 8 illustrates the 10% positive and nega-
tive changes in seasonally adjusted rainfall and their 
impacts on global acute nutrition in Somalia. It is evident 
from the figure that a 10% positive change in seasonally 
adjusted rainfall increases global acute nutrition in both 

the short and long run, with the most significant effect 
observed in the long run. Conversely, the reduction in 
seasonally adjusted rainfall can mitigate malnutrition by 
decreasing displacement due to floods.

Fig. 5  Impulse response plot depicting the scale effect (armed conflicts) and its influence on global acute malnutrition. Panels a and b illustrate 
the impact of a 10% increase and decrease in the scale effect on global acute malnutrition, respectively, with dots indicating average prediction 
values. The dark blue to light blue lines represent 75%, 90%, and 95% confidence intervals

Fig. 6  Impulse response plot depicting the scale effect (food price inflation) and its influence on global acute malnutrition. Panels a and b illustrate 
the impact of a 10% increase and decrease in the scale effect on global acute malnutrition, respectively, with dots indicating average prediction 
values. The dark blue to light blue lines represent 75%, 90%, and 95% confidence intervals
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Kernel‑based regularized least squares
Table  9 presents the pointwise derivatives obtained 
through kernel-based regularized least squares, providing 
insights into the sensitivity of global acute malnutrition 

to changes in the explanatory variables. The average 
pointwise derivative for each variable is accompanied 
by its standard error, t-value, and p-value. For lncon-
flicts, the average pointwise derivative is 1.3078 with a 

Fig. 7  Impulse response plot depicting the scale effect (seasonally adjusted temperature) and its influence on global acute malnutrition. Panels 
a and b illustrate the impact of a 10% increase and decrease in the scale effect on global acute malnutrition, respectively, with dots indicating 
average prediction values. The dark blue to light blue lines represent 75%, 90%, and 95% confidence intervals

Fig. 8  Impulse response plot depicting the scale effect (seasonally adjusted rainfall) and its influence on global acute malnutrition. Panels a and b 
illustrate the impact of a 10% increase and decrease in the scale effect on global acute malnutrition, respectively, with dots indicating average 
prediction values. The dark blue to light blue lines represent 75%, 90%, and 95% confidence intervals
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standard error of 0.3132, indicating a statistically signifi-
cant positive relationship (t = 4.175, p < 0.001). The vari-
ability in lnconflicts contributes to variations in global 
acute malnutrition. Similarly, for lnfpi, the average point-
wise derivative is 4.1314 with a standard error of 0.4608, 
suggesting a significant positive relationship (t = 8.965, 
p < 0.001). Changes in lnfpi have a substantial impact on 
the global acute malnutrition. In the case of lntempera-
ture_sa, the average pointwise derivative is 5.0174 with 
a standard error of 4.3902, indicating a positive relation-
ship, although it is not statistically significant at the con-
ventional significance level (t = 1.143, p = 0.256). The wide 
standard error suggests some uncertainty in the esti-
mated relationship. For lnrainfall_sa, the average point-
wise derivative is 0.3305 with a standard error of 0.1046, 
suggesting a statistically significant positive relationship 
(t = 3.161, p = 0.002). Changes in lnrainfall_sa have a 
notable impact on the global acute malnutrition.

The diagnostics section in Table  9  provides addi-
tional information. The lambda value, a regularization 
parameter, is 0.3045, indicating the degree of regulari-
zation applied in the estimation process. Sigma, rep-
resenting the bandwidth, is 4. The model’s goodness of 
fit is reflected in an R-squared of 0.748, indicating that 
approximately 74.8% of the variability in the global acute 
malnutrition is explained by the explanatory variables. 
The effective degrees of freedom are 28.77, reflecting the 
model’s complexity. The leave-one-out loss (Looloss) is 
36.69, providing a measure of model fit.

Another method for promptly assessing the heteroge-
neity of effects is the presentation of a histogram of the 
pointwise marginal effects, as depicted in Fig. 9. The con-
firmation of substantial effect heterogeneity is obtained 
from the histogram, indicating that the average marginal 
effects provide only partial information regarding the 
diverse effects of armed conflicts, food price inflation, 
temperature, and rainfall on global acute malnutrition.

Furthermore, an examination of how and why mar-
ginal effects vary for armed conflicts, food price infla-
tion, temperature, and rainfall were conducted. This was 

achieved by plotting the marginal effects against the lev-
els of armed conflicts, food price inflation, temperature, 
and rainfall. The results, depicted in Fig.  10, showcase 
how the marginal effect estimates from kernel-based 
regularized least squares effectively trace the derivative of 
the nonlinear conditional relationship. The observation 
reveals that the marginal effect is generally negative at 
low levels of each variable and becomes positive at high 
levels of each variable.

Discussion
The main aim of this study is to conduct a comprehensive 
examination of the intricate dynamics involving armed 
conflicts, food price inflation, and climate variability, and 
their combined impact on global acute malnutrition in 
Somalia. Employing sophisticated analytical models such 
as dynamic ARDL simulations and kernel-based regular-
ized least squares, the research delves into the nuanced 
interactions within these variables to unravel their intri-
cate relationships. In the short run, the discerned positive 
associations between armed conflicts, food price infla-
tion, and malnutrition not only highlight the vulnerability 
of conflict-prone regions but also underscore the height-
ened risk during periods of economic inflation. This 
aligns seamlessly with prior research that emphasizes 
the amplified threat of malnutrition in areas affected by 
armed conflicts and economic instability, contributing to 
the broader discourse on the far-reaching consequences 
of socio-economic disruptions [6, 7, 9–11, 22].

Furthermore, in the short run, the positive associa-
tions between climatic variables (temperature and rain-
fall) and global acute malnutrition imply a multifaceted 
relationship influenced by environmental factors. Ele-
vated temperatures and increased rainfall may exacerbate 
malnutrition levels, potentially due to their impact on 
agricultural productivity and food security. This obser-
vation aligns with studies emphasizing the vulnerability 
of susceptible populations to climate-induced food inse-
curity and malnutrition [12, 13, 23, 24]. Some studies 
suggest that heightened rainfall, particularly resulting 

Table 9  Pointwise derivatives using kernel-based regularized least squares

Variable Average SE t P-value P25 P50 P75

lnconflicts 1.3078 0.3132 4.175 0.000 0.0623 1.1499 2.4748

lnfpi 4.1314 0.4608 8.965 0.000 2.0163 4.3750 6.4836

lntemperature_sa 5.0174 4.3902 1.143 0.256 − 11.5978 4.0170 19.8267

lnrainfall_sa 0.3305 0.1046 3.161 0.002 0.0123 0.3522 0.6612

Diagnostics

Lambda 0.3045 Sigma 4 R2 0.748 Obs 96

Tolerance 0.0960 Eff. Df 28.77 Looloss 36.69
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from floods, might displace populations, thereby increas-
ing vulnerability to malnutrition by disrupting access to 
food, water, and healthcare. Additionally, while elevated 
temperatures can influence crop yields, extreme heat 
events could negatively impact agricultural productiv-
ity, contributing to food shortages and malnutrition [25]. 
It is essential to note that certain studies underscore the 
increased likelihood of malnutrition with rising tempera-
tures and decreasing rainfall [26–28], emphasizing the 
role of geographical context and infrastructural differ-
ences between countries.

The examination of the short-term dynamics reveals 
a notable absence of a significant relationship between 
temperature and malnutrition, prompting a deeper 
exploration of the intricate interactions between climate 
variables and nutritional outcomes. This intriguing result 
challenges conventional assumptions and underscores 
the necessity for more nuanced, context-specific inves-
tigations. Notably, this finding aligns with recent stud-
ies advocating for a localized understanding of climate 
impacts on nutrition, as emphasized by Fanzo et al. [29].

In contrast, the long-term analysis using the ARDL 
model sheds light on the enduring consequences of 
armed conflicts and food price inflation on global acute 
malnutrition. This persistence of impacts underscores the 

critical need for sustained efforts to address conflict and 
enhance economic stability, as these factors play pivotal 
roles in mitigating long-term malnutrition challenges. 
These findings resonate with the arguments put forth by 
Homeida [8] and Fadare et al. [30], emphasizing the mul-
tifaceted nature of interventions required for sustained 
nutritional well-being.

Furthermore, the enduring positive associations 
between temperature, rainfall, and malnutrition in the 
long run underscore the lasting impact of climate vari-
ability on nutritional outcomes. This observation is con-
sistent with an expanding body of literature recognizing 
the role of climate change in shaping long-term nutri-
tional patterns. Studies by van der Merwe et al. [28], Mut-
tarak and Dimitrova [31], and Elayouty et  al. [14] have 
contributed to this growing understanding. However, the 
non-significant positive relationship between tempera-
ture and malnutrition in the long run poses a significant 
avenue for further investigation, challenging prevailing 
assumptions about the linear nature of climate-malnutri-
tion associations.

The robustness of these findings is further supported 
by the consistent results obtained through kernel-based 
regularized least squares. This analytical approach 
enhances the credibility of the study, providing a more 
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comprehensive understanding of the complex relation-
ships underpinning global acute malnutrition in Soma-
lia. The application of kernel-based regularized least 
squares not only ensures the stability and replicability of 
our results but also contributes to the reliability of the 
observed patterns and dynamics within the context of 
our study. This cutting-edge technique goes beyond tra-
ditional analyses and positions our research at the fore-
front of methodological advancements in nutritional 
studies, ensuring a more thorough and nuanced explora-
tion of the complex relationships within our study.

Despite the robustness of the findings, it is crucial to 
acknowledge certain limitations in the current study. 
Firstly, the study relies on secondary data, which intro-
duces inherent limitations, such as the lack of control 
over the data collection processes. While efforts were 
made to ensure the reliability and validity of the data 
sources, the potential for errors or biases inherent in sec-
ondary data cannot be completely eliminated. Addition-
ally, the analysis spans a considerable timeframe, from 
January 2015 to December 2022, and variations in data 
quality and availability over this period may potentially 
influence the results. It is important to note that the data 

may underreport global acute malnutrition in Soma-
lia due to potential gaps or inconsistencies in reporting 
mechanisms. Furthermore, the complex nature of con-
flict dynamics and the multifaceted impact of climate 
variability pose significant challenges in capturing the 
full spectrum of influencing factors accurately. While 
the study attempted to account for these complexities 
through sophisticated analytical techniques, there may 
still be unobservable factors or interactions that were 
not fully accounted for in the analysis. Moreover, the 
study focused primarily on quantitative data, limiting 
the exploration of qualitative factors that may also play 
a significant role in shaping global acute malnutrition 
outcomes. Additionally, we did not account for regional 
differences, which could have an impact on the results 
and their generalizability to different parts of Soma-
lia. To address these limitations and further enrich the 
understanding of the subject, future research endeavors 
should consider regional differences, incorporating more 
nuanced data sources, extending the time span under 
investigation to capture long-term trends and dynamics, 
and integrating qualitative insights through approaches 
such as interviews or focus group discussions with key 
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stakeholders. This holistic approach will contribute to 
a more comprehensive and nuanced exploration of the 
determinants and dynamics of global acute malnutri-
tion in the context of Somalia, ultimately informing more 
effective policy and intervention strategies.

Conclusions and recommendations
The study employs dynamic ARDL simulations and ker-
nel-based regularized least squares to analyze the long 
and short-term effects of armed conflicts, flood price 
inflation, and climate variability on global acute malnutri-
tion in Somalia. In the short run, armed conflicts and food 
price inflation exhibit positive associations with global 
acute malnutrition, indicating higher malnutrition rates 
in conflict-prone areas and during periods of inflation. 
Moreover, climatic variables (temperature and rainfall) 
show positive associations with global acute malnutrition, 
suggesting that elevated temperatures and rainfall may 
exacerbate malnutrition levels. However, temperature 
does not exhibit a statistically significant relationship with 
global acute malnutrition in the short run. In the long run, 
armed conflicts and food price inflation maintain persis-
tent impacts on global acute malnutrition, as evidenced 
by the dynamic ARDL simulations model. Temperature 
and rainfall continue to demonstrate positive associations 
with global acute malnutrition, emphasizing their poten-
tial role in long-term nutritional deteriorations. Tem-
perature, while not significant in the short run, still does 
not not exhibit a statistically significant positive relation-
ship with global acute malnutrition in the long run. The 
diagnostic checks affirm the model’s validity, support-
ing its appropriateness for capturing complex relation-
ships among variables. These results are consistent with 
those from kernel-based regularized least squares further 
enhancing the robustness of these findings.

Recommendations arising from these findings empha-
size the importance of addressing armed conflicts, food 
price inflation, and climate variability to mitigate global 
acute malnutrition in Somalia. Efforts to stabilize regions 
prone to conflicts can significantly reduce malnutrition 
rates, suggesting the need for diplomatic interventions 
and peace-building initiatives. Additionally, measures 
to control and manage food price inflation are crucial, 
as higher inflation levels are associated with increased 
malnutrition. Climate adaptation strategies should be 
implemented to mitigate the adverse effects of tempera-
ture changes and fluctuating rainfall patterns, empha-
sizing the importance of building resilience against 
climate-related shocks. Policymakers and humanitarian 
organizations can apply these findings to design specific 
interventions that prioritize conflict resolution, food 
security, and climate resilience, ultimately contributing to 
an improvement in Somalia’s comprehensive nutritional 

health. Furthermore, it is essential to enhance data collec-
tion and monitoring systems to track changes in armed 
conflicts, food prices, and climatic conditions, enabling 
timely interventions and targeted resource allocation 
to the most vulnerable populations. Public health cam-
paigns and community-based interventions should also 
be strengthened to promote nutrition education, breast-
feeding practices, and access to fortified foods, especially 
in conflict-affected and food-insecure areas. By adopting 
a multi-sectoral approach that addresses the underlying 
drivers of malnutrition, stakeholders can work towards 
sustainable solutions that improve the overall health and 
well-being of Somalia’s population.
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