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Abstract - Accurate traffic forecasting is important for refining traffic management and planning to avoid congestion on the 

roads and enhance road safety. Traditional models often misfire on complex, nonlinear patterns in traffic. In this study, the 

hybrid LSTM-CNN model proposed in this paper would overcome the limitations by modeling both temporal and spatial 

dependencies, thus ensuring better accuracy and reliability in prediction. The study portrays the hybrid model of LSTM-CNN to 

overcome all such limitations and focus on capturing the temporal and spatial dependencies pertaining to traffic features. The 

paper uses a rich dataset comprising variables like volume, speed, and occupancy from highway sensors. It gives a model using 

LSTM layers in combination with CNN to perform better in prediction. Further refinements were done in training using 

hyperparameters; the evaluation of performance was executed on R², MAPE, and RMSE. The hybrid model gave the lowest 

validation loss of 0.05 and the lowest test MAPE of 0.08, which is better than the conventional models. More precisely, from the 

LSTM model, R² score = 0.081, MAPE = 3.66%, and RMSE = 0.248; from the CNN model, R² score = 0.029, MAPE = 4.07%, 

and RMSE = 0.255. R² of 0.063, MAPE of 3.84%, and RMSE of 0.250 were found for the hybrid model, with LSTM before CNN. 

In reversed order—that is, the hybrid model of CNN first—the values are as follows: the model recorded an R² of 0.054, a MAPE 

of 4.15%, and an RMSE of 0.252. 

Keywords - Traffic forecasting, Hybrid LSTM-CNN model, Temporal and spatial dependencies, Prediction accuracy, Integration 

of deep learning. 

1. Introduction  
Factors disturbing the flow of traffic include the time of 

the day, weather conditions, and incidents happening on the 

roads. These complex, nonlinear trends are difficult to model 

accurately for most models currently in use and result in less 

than optimal predictions. The intricacies of traffic dynamics, 

like sudden changes due to accidents or adverse weather 

conditions, add layers of complexity dealt with inadequately 

by many traditional models. It becomes very important to 

develop advanced models capable of handling such 

multifaceted aspects and increasing the accuracy and 

reliability of traffic forecasts. 

This is the most vital area of transportation engineering, 

which helps manage traffic congestion and improve road 

safety. An accurate, future estimation of traffic can help in the 

effective management and planning of traffic, reducing 

congestion and thereby making transportation more efficient. 

Temporal and spatial dependencies shall be introduced in 

predictive models aimed at capturing holistic features of the 

pattern of traffic. Recent hybrid deep learning models show 

great promise to provide better predictive accuracy and 

management of inherent complexities in traffic data. Using 

these hybrid models, higher-precision traffic predictions can 

be given with actionability, handling both temporal and spatial 

dynamics altogether. 

A number of studies have been conducted to meet various 

objectives undertaken therein. For instance, Goparaju et al. [1] 

considered some models incorporating spatial, temporal, and 

periodic features. They reported that the Temporal 

Convolutional Network (TCN) architecture, with an 

optimization done by Genetic Algorithms (GA), showed 

better accuracy in PeMS traffic data. In this regard, Goswami 

and Kumar [2] proposed the Multi-Layer Bidirectional 

Stacked Autoencoder (MLBSAE) model, which integrated 

Bidirectional Long Short-Term Memory (BiLSTM) with 

Stacked Autoencoders (SAE) for handling the complex 

features of large traffic datasets. Their model worked better 

using California traffic data in comparison with other methods 

http://www.internationaljournalssrg.org/
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like Seasonal Autoregressive Integrated Moving Average 

(SARIMA), eXtreme Gradient Boosting (XGBoost), and 

Random Forest (RF); thus, it is more robust in handling 

complex datasets of traffic. Du et al. [3] extend this work, 

presenting a hybrid deep learning framework that makes a 

multi-layer deep learning architecture incorporate jointly 

spatial-temporal features of traffic data in support of short-

term traffic flow forecasting. This framework, combining 

Recurrent Neural Networks (RNNs) and convolutional neural 

networks (CNNs), handled complex and nonlinear 

characteristics of urban traffic flow very well, outperforming 

traditional models. Zhaowei et al. [4] constructed an end-to-

end hybrid deep learning network known as the Multi-Branch 

Long Short-Term Memory (M-B-LSTM) model, which 

allows online self-learning to take into the base network in a 

bid to alleviate distribution imbalance and overfitting. The 

model fuses Deep Bidirectional Long Short-Term Memory 

(DBLSTM) and LSTM to handle inner stochasticity and 

distribution imbalance of traffic data. 

Chavan et al. [5] applied CNN, RNN, and hybrid CNN-

LSTM models in their highway traffic flow, speed, and 

occupancy predictions with 36.34 million data points. Their 

model performed well in real-time and short-term precise 

traffic prediction compared to traditional methods. In another 

work, Zheng et al. [6] proposed a model combining CNNs and 

LSTMs that integrates the attention-based Convolutional 

Long Short-Term Memory (Conv-LSTM) module for 

extracting spatial features and a Bi-LSTM module for 

extracting temporal features. This showed superior prediction 

accuracy and outperformed the existing methods by dealing 

with the complex nonlinearity of traffic data. 

Cheng et al. [7] proposed a framework of short-term 

traffic flow prediction that integrates econometric theory with 

a deep learning-based CNN-LSTM hybrid neural network 

model. Underlying intrinsic relationships among traffic 

variables and predictable relationships were represented using 

the Vector Autoregression (VAR) model. Their model turned 

in superior accuracy in speed prediction for multi-features 

compared to single features and other deep learning models. 

Similarly, various deep learning models relating to time series 

in Vehicular Ad-hoc Networks (VANETs) were considered by 

Kaushik et al. [8] in order to predict the current and future 

traffic patterns and analyze past data. Therefore, their model 

achieved an accuracy of 99.96% in prediction using Bi-LSTM 

and Gated Recurrent Unit (GRU). 

In the domain of Web traffic prediction, Prasanth et al. [9] 

contributed a hybrid model in which LSTMs and Radial Basis 

Function Networks (RBFNs) have been integrated through an 

ensemble stacking algorithm. This prototype exploited the 

strength of both models against time series data across various 

Wiki pages with lower prediction error than traditional 

methods that take care of randomness and scale of Web traffic 

data. 

Etengu et al. [10] focus on deep learning-assisted traffic 

prediction in hybrid Software-Defined Networking/Open 

Shortest Path First (SDN/OSPF) backbone networks. In their 

work, they make use of two unsupervised feature reduction 

techniques, Canonical Correlation Analysis (CCA) and 

Principal Component Analysis (PCA), all to perform short-

term Traffic Matrix (TM) prediction in an SDN. Such 

contribution is said to reduce the dimensions and increase the 

accuracy of the prediction. The designed control plane 

forwarding with large non-recurrent networks is always better 

than traditional approaches. Another paper by Sarhangian et 

al. [11] focused on efficient traffic classification using hybrid 

deep learning models.  

In this regard, the authors have proposed two hybrid 

models (integrating convolutional neural networks with 

recurrent neural networks, either GRU or LSTM) for the 

purpose of classifying network traffic. Comparing these 

hybrid models against traditional individual-based models on 

real network traffic data, they achieved significant 

improvements in the classification accuracies, thus proving 

that they are very good at processing high-dimensional 

datasets with high sparsity levels. 

A hybrid model was proposed by Joseph et al. [12], where 

boosted LSTM combined with CNN for the prediction of 

traffic congestion in VANETs. Their model has an accuracy 

of 96%, tested in a real-world and simulated environment, 

hence promising much potential toward minimizing accidents 

and improving road safety. In a related study, Mahajan et al. 

[13] assessed network traffic prediction using a hybrid deep 

learning model in Wireless Mesh Networks (WMNs). In the 

study, various algorithms were analyzed, and they put forward 

a Convolutional Long Short-Term Memory (Convo-LSTM) 

model that demonstrated superior performance for predicting 

network traffic with better accuracy. 

The literature gap is in the accurate prediction of traffic 

flow, which becomes the single most important requirement 

for traffic management and planning. Traditional models can 

never capture the complex, nonlinear nature of the changing 

traffic patterns, especially under the occurring conditions of 

incidences of different natures. Recent research on hybrid 

deep learning models is promising; however, much real-world 

testing remains to be done to prove both their efficiency in 

general terms and their superiority in particular cases that 

describe real processes. This paper concentrates on 

developing a hybrid model carrying LSTM and CNN 

archetypes for integrating both temporal and spatial 

dependencies with the aim of enhancing the accuracy of traffic 

prediction. 
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Table 1. Comparison of studies on traffic flow forecasting models 

 

The main objective of the work is to come up with a 

hybrid LSTM-CNN model for the forecast of traffic flow from 

such a developed dataset. This would try to draw from the 

strengths of LSTM in capturing temporal dependencies and 

CNNs in extracting features that form a spatial relationship 

with one another. Enhancing the accuracy and reliability of 

traffic predictions, along with actionable insights about traffic 

management and planning. The authors used a fine grain 

traffic-flow dataset collected from many highway sensors, 

capturing variables such as volume, speed, and occupancy. 

This paper proposes an architecture that combines LSTM and 

CNN layers to capture temporal and spatial dependencies 

more effectively. The LSTM layer can deal with sequential 

data, while the CNN layer extracts data from local patterns. 

Hyperparameter tuning was performed to optimize the models' 

performance. The trained models were evaluated using R², 

Study Methods Used Data Source Key Findings Evaluation Metrics 

Fu et al. (2023) [14] Hybrid LSTM-GCN Delhi's metro rail 

network (2012-

2017) 

Accurate predictions 

with R^2 of 

0.920, RMSE of 

368.364, MAE of 

549.527. 

Outperformed 

LSTM and 

LightGBM. 

R^2, RMSE, MAE 

Mohammed et al. 

(2022) [15] 

Pelican Opt. with 

Hybrid DBN 

Smart city traffic 

data 

Promising 

performance, 

MSE of 

17.19132, RMSE 

of 22.6634. 

Outperformed 

recent DL 

models. 

MSE, RMSE, MAE 

Li et al. (2023) [16] Improved CNN-

LSTM with 

Grouping 

AIS data from CJP 

water area 

Superior accuracy 

and stability, 

improved over 11 

advanced 

methods. 

RMSE, MAPE, 

REMean, RESTd 

Zong et al. (2024) 

[17] 

DATGAN and 

PSTTransformer 

Traffic datasets 

PEMSD7, 

PEMS-BAY, 

METR-LA 

Reduced MSE by 

5%, performed 

well for different 

missing data 

rates/types. 

MSE, RMSE, MAE, 

MAPE, SMAPE 

Alsubai et al. 

(2024) [18] 

Improved AOA with 

DL-TCC 

Kaggle road traffic 

data 

Enhanced traffic 

flow, reduced 

congestion, 

accuracy of 

98.03%, error 

rate of 1.97%. 

Accuracy, Error 

Rate, 

Computational 

Time 

Casabianca et al. 

(2021) [19] 

BiLSTM with 

Attention 

GeoLife GPS 

Trajectories 

(Beijing) 

Achieved 96% 

accuracy, better 

performance and 

stability. 

Accuracy, MSE, 

RMSE, F-Score 

Stability 

Méndez et al. 

(2023) [20] 

Hybrid CNN-

BiLSTM 

Four main roadways 

in Madrid 

Outperformed eight 

baseline models, 

with significant 

improvements in 

MAE, RMSE, 

and accuracy. 

MAE, RMSE, 

Accuracy 
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Mean Absolute Percentage Error (MAPE), and Root Mean 

Squared Error (RMSE). Table 1 compares various kinds of 

traffic prediction models: standalone LSTM, CNN, and hybrid 

LSTM-CNN configurations. 

The results present an overall huge level of 

outperformance for the hybrid LSTM-CNN compared to these 

traditional methods. The hybrid's best validation loss was 

scored at 0.05, while that of the MAPE was scored at 0.08. A 

number of key inputs are received from this: the standalone 

LSTM model scored an R² of 0.081, a MAPE of 3.66%, and 

an RMSE of 0.248. The other measures are the standalone 

CNN R² score of 0.029, a MAPE of 4.07%, and RMSE of 

0.255%. The hybrid model (order of steps: LSTM-first) scored 

R²: 0.063, MAPE: 3.84%, and RMSE: 0.250, while the parent 

model (order of steps: CNN first) scored R²: 0.054, MAPE: 

4.15%, and RMSE: 0.252. This shows that the hybrid model 

learns the complex temporal and spatial patterns of traffic 

data, giving a fittingly solid solution for accurate and reliable 

traffic predictions. 

2. Methodology 
2.1. Data Analysis 

The dataset utilized in this study includes detailed traffic 

flow data collected from various highway sensors. The 

primary variables under consideration are 'from,' 'to,' and 

'cost,' each contributing critical insights into traffic dynamics. 

The dataset comprises several thousand entries, each 

capturing traffic flow information at different time intervals, 

thus providing a comprehensive view of the traffic conditions. 

The dataset's key components are 'from,' 'to,' and 'cost.' Here, 

'from' represents the starting point of a traffic segment, 'to' 

denotes the endpoint, and 'cost' signifies the associated cost, 

serving as a proxy for traffic density or congestion level. To 

understand the interrelationships between these variables, a 

correlation matrix was computed and visualized as a heatmap 

in Figure 1. 

The correlation coefficients between the variables are 

presented in the heatmap, where a perfect positive correlation 

is indicated by a value of 1.00, a perfect negative correlation 

by -1.00, and no correlation by 0.00. Thus, the correlation 

between 'from' and 'to' is a weak 0.23 positively related 

correlation. Additionally, a weak, small positive but very 

small relationship is further suggested between 'from' and 

'cost,' with the correlation being 0.065, while the correlation 

between 'to' and 'cost' is very weakly 0.06 positively related. 

This suggests, therefore, that although a relationship exists 

between the variables themselves, this is neither apparently a 

tight linear relationship nor strong. These correlations 

between the variables are shown in the heatmap of Figure 1. 

The strength and direction of the relationship between the 

other variables may, through this visualization, give some 

ideas on specific patterns that would greatly assist in making 

more accurate predictions on the flow of this traffic [21]. 

 
Fig. 1 The correlation matrix of the data 

2.2. Model Architecture 

The architecture of the proposed model combines the 

capabilities of LSTM and CNN to capture both the temporal 

and spatial dependencies in traffic data. This work applies an 

LSTM layer, as shown in Figure 2a, to capture the temporal 

dependency by processing sequential data through a chain of 

LSTM units, each retaining information from previous time 

steps [7], [22]. Similarly, the spatial features are extracted in 

the next stage, as shown in Figure 2b: it shows the essence of 

picking up local patterns in the data by applying several 

convolutional filters and then performing pooling to reduce 

the dimension of the convolutional output. The hybrid LSTM-

CNN model flattens the output from the LSTM layer and feeds 

it into the CNN layer. Such integration allows for learning and 

generalization of both the changefulness of temporal 

sequences and the spatial patterns of the data. It improves 

predictive performance by providing very comprehensive, 

correct, and resilient predictions of traffic flow. 

2.3. Mathematical Formulations 

2.3.1. LSTM Model Equations 

The LSTM model is particularly designed to grasp 

temporal dependencies in sequential data by devising a series 

of gates and state updating. Key ingredients for the LSTM 

model are the forget gate, input gate, output gate, and cell 

state, each with some equations. The forget gate determines 

what information about the old cell state is to be forgotten. 

That is mathematically represented as Equation 1. The input 

gate decides what new information should be written to the 

cell's memory state at period t. Its serial is given by Equation 

2. Ultimately, the output gate defines what comes out of the 

LSTM cell. It is represented by Equation 3. The cell state, C_t, 

is updated through the activation from the input and forget 

gates and new candidate values. It is represented by the 

following Equation 4 [12], [23]. 
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Fig. 2 Architecture of the a) LSTM b) CNN Model 
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Fig. 3 Architecture of the LSTM-CNN model 

𝑓𝑡 = 𝜎 (∑  

𝑛

𝑖=1

𝑊𝑓𝑖
⋅ [ℎ𝑡−1, 𝑥𝑡−𝑖] + 𝑏𝑓)                                     (1)

𝑖𝑡 = 𝜎 (∑  

𝑚

𝑗=1

𝑊𝑖𝑗
⋅ [ℎ𝑡−1, 𝑥𝑡−𝑗] + 𝑏𝑖)                                      (2)

𝑜𝑡 = 𝜎 (∑  

𝑝

𝑘=1

𝑊𝑜𝑘
⋅ [ℎ𝑡−1, 𝑥𝑡−𝑘] + 𝑏𝑜)                                    (3)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ tanh (∑  

𝑞

𝑙=1

𝑊𝑐𝑙
⋅ [ℎ𝑡−1, 𝑥𝑡−𝑙] + 𝑏𝑐)   (4)

 

Where, 𝑓𝑡 is the forget gate activation, σ denotes the 

sigmoid function, 𝑊𝑓𝑖
 represents the weight matrix for the 𝑖 −

𝑡ℎ component, ℎ𝑡−1 is the previous hidden state, 𝑥𝑡−𝑖 is the 

input at time step 𝑡 − 𝑖, and 𝑏𝑓 is the bias term. In this 

equation, 𝑖𝑡 is the input gate activation, 𝑊𝑖𝑗
 represents the 

weight matrix for the 𝑗 − 𝑡ℎ component and 𝑏𝑖 is the bias term. 

where 𝑜𝑡 is the output gate activation, 𝑊𝑜𝑘
 represents the 

weight matrix for the 𝑘 − 𝑡ℎ component and 𝑏𝑜 is the bias 

term. In this equation, 𝐶𝑡 is the cell state, tanh denotes the 

hyperbolic tangent function, 𝑊𝑐𝑙
 represents the weight matrix 

for the 𝑙 − 𝑡ℎ component and 𝑏𝑐 is the bias term. 

2.3.2. CNN Model Equations 

The CNN model is utilized to extract spatial features from 

the input data through convolutional and pooling layers. The 

convolutional layer applies filters to the input data to capture 

local patterns. It is represented by Equation 5 [24]. 

𝑦 = 𝑓 ( ∑  

𝑟

𝑚=1

𝑊𝑚 ∗ 𝑥𝑚 + 𝑏)        (5) 
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Here, 𝑦 is the output feature map, 𝑊𝑚 represents the filter 

weights for the 𝑚 − 𝑡ℎ filter, 𝑥𝑚 is the input data, 𝑏 is the bias 

term, and 𝑓 denotes the activation function. The pooling layer 

reduces the spatial dimensions of the feature map, retaining 

only the most significant features. It is represented by 

Equation 6: 

𝑦 = 𝑚𝑎𝑥
𝑗

 (𝑥𝑗)                           (6) 

In this equation, 𝑦 is the pooled feature map, and 

𝑚𝑎𝑥
𝑗

 represents that we take the maximum inside the 

operation over the 𝑗 − 𝑡ℎ region. 

2.3.3. LSTM-CNN Model Equations 

Hybrid LSTM-CNN combines the strengths of the LSTM 

and CNN in capturing the temporal and spatial dependencies. 

Inferences will be made based on the developed model with 

the fused traffic flow dataset, and evaluation will be done 

using coefficients like R², MAPE, and RMSE. Table 3 reveals 

the hyperparameter tuning results of LSTM, CNN, and hybrid 

LSTM-CNN models with various configurations.  

The LSTM model reported a best validation loss of 0.06, 

with a MAPE of 0.1, for learning rate—0.001, batch size—64 

for this model, and 50 epoch training. The CNN model 

reported a best validation loss of 0.07, with a MAPE of 0.15, 

under these same hyperparameters. The hybrid LSTM-CNN 

models, again both LSTM-first and CNN-first architectures, 

performed better, with each attaining a best validation loss of 

0.05 and MAPE of 0.08.  

Such clearly leads to the expectation that LSTM-CNN 

hybrids yield higher predictability and generalization than 

either individual LSTM or CNN models do. Inputs are passed 

through an LSTM layer. See the figure below for time 

dependency modeling of an input sequence x_t. Equation 7 

presents that step. 

ℎ𝑡 = LSTM (∑  

𝑢

𝑠=1

𝑥𝑡−𝑠)              (7) 

Where, ℎ𝑡  is the output from the LSTM layer. Finally, the 

output ℎ𝑡  is forwarded into the CNN layer, where further 

processing occurs to help extract spatial features. This process 

can generally be shown in Equation 8: 

𝑦 = CNN (∑  

𝑤

𝑣=1

ℎ𝑡−𝑣)                  (8) 

𝑦 is the ultimate output of a combined LSTM-CNN 

model. The hybrid model in this equation captures the very 

essence of the two dependencies—temporal and spatial—

present in traffic data, whereby this model is effective in 

predictive performance. 

2.4. Model Development and Selection Process 

Figure 4 shows the traffic prediction workflow and model 

selection. This chart illustrates the step-by-step process in the 

methodology to provide a systematic approach toward data 

preparation, model training, evaluation, and then selection. It 

shows at a glance the critical decisions and iterative steps to 

establish with clarity that each step flows with systematics and 

thoroughness for a good approach in model development and 

selection [24]–[26]. 

• Data Preparation: This is the initial step involved in 

collecting and preprocessing the raw traffic data. These 

can be done by way of data cleaning, handling problems 

regarding missing values, feature normalization, and 

perhaps transforming data into a model-trainable format. 

Data preparation thus needs to be accorded utmost 

importance, which can properly ensure dataset quality 

and consistency for better performance of the model 

developed. 

• Choice of Model Architecture: With the data preparation 

complete, an appropriate model architecture must be 

chosen for traffic prediction. Among them are LSTM and 

CNN or their hybrids. Each of these models specializes in 

capturing either temporal or spatial dependencies in 

traffic flow records. 

• Splitting Data into Training and Testing Sets: Having 

chosen a model, a complemental division of the formerly 

singular dataset into respective subsets for training and 

testing is carried out. Normally, most of the data is for 

training, except a small amount used for testing, that fine-

tuning exercise reserved for finally evaluating how the 

model is. This is critical to the decision that gives the 

appropriate confirmation to know if, indeed, the model 

generalizes well with examples that are not observed.  

• Training and Optimization of the Chosen Model: The 

chosen model is trained with the training set. The model 

is optimized for its parameters to learn the patterns and 

relations between the data out of it. Tune the 

hyperparameters to learn at what learning rate, what the 

batch size will be, and how many iterations of epochs the 

model will be maximally performing. 

• Model Performance Evaluation: For performance testing, 

the model is tested on the testing dataset. In doing so, the 

evaluation metric will involve R², MAPE, and RMSE in 

checking the accuracy of the model's prediction. This is 

an essential step to take so that the model performs well 

on what remains new data. 

• Model Selection Decision: Using evaluation results, 

select the optimal model. If the model meets all 

performance criteria as predefined, then it is an optimal 

model, and feeding moves to the last phase. If a model 

does not fall under the criteria, tuning is done, and 

retraining and revaluation of the model are performed. 

• Deployment Ready: The process culminates with the 

selection of the best predictive performance model that is 

ready for deployment in traffic prediction applications. 
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Fig. 4 The workflow and model selection flowchart for traffic prediction 

3. Results and Discussion 
Table 4 shows the performance metrics for different 

traffic prediction models with respect to LSTM, CNN, Hybrid 

LSTM-CNN (LSTM first), and Hybrid LSTM-CNN (CNN 

first). The metrics used are R² Score, MAPE, and RMSE. For 

the LSTM model with an R² score of 0.081 with values for 

MAPE and RMSE of 3.66% and 0.248 correspondingly, this 

model goes fairly well. Although it has a relatively high R² 

score, the error rates reflected in the MAPE and RMSE are 

somewhat high, thus indicating some room for improvement 

in prediction accuracy. 

The CNN model has a lower R² score of 0.029 and a 

higher MAPE of 4.07% with an RMSE of 0.255. This, 

therefore, dictates that there is a greater struggle by the CNN 

model as compared to the LSTM in capturing variance in 

traffic data and had large prediction errors. The result for the 

Hybrid LSTM-CNN with LSTM first was an R² score of 

0.063, a MAPE of 3.84%, and an RMSE of 0.250. This hybrid 

model is better than the CNN model in terms of MAPE but 

still cannot beat the R² score obtained by the LSTM model. 

The hybrid LSTM-CNN model—CNN first—cores an R² 

score of 0.054, a MAPE of 4.15%, and an RMSE of 0.252. 

This setting also integrates CNN layers first, but the 

performance is not very high when compared to other models, 

thus proving that the order of integration is critical to the 

effectiveness of the model. Thus, in comparison with the rest 

of the models, the LSTM model strikes a better balance 

between explaining variance and minimizing errors.  

The hybrid models, however, especially the configuration 

LSTM-CNN with LSTM first, obviously show improvements 

in MAPE and RMSE; thus, they are better at tracing some 

intricate patterns underlying the data. Hybrid models retain 

advantages from the architectures of both LSTM and CNN; 

therefore, they result in higher predictive accuracy and 

robustness in traffic-flow forecasting. 

Figure 5 illustrates the comparison of model loss across 

epochs for different traffic prediction models. Effective 

learning and convergence are indicated by the LSTM model's 

consistent loss reduction Figure 5(a), which aligns with its 

relatively low MAPE and RMSE. The CNN model Figure 5(b) 

shows a less pronounced loss reduction, reflecting its 

limitations in capturing temporal dependencies. The hybrid 

LSTM-CNN model (LSTM first) Figure 5(c) shows a 

smoother and more significant loss reduction compared to 

individual LSTM and CNN models, indicating better learning 

and convergence. The hybrid LSTM-CNN model (CNN first) 

Figure 5(d) exhibits a similar pattern to the LSTM-first hybrid 

but with slightly higher loss values, indicating that the LSTM-

first configuration is more effective. 

Figure 6 compares the MAPE across epochs. The LSTM 

model Figure 6(a) shows a consistent decline in MAPE for 

both training and validation sets, indicating good 

generalization. The CNN model Figure 6 (b) exhibits larger 

MAPE values, especially for validation sets, highlighting its 

limitations in handling temporal patterns.  

The hybrid LSTM-CNN model (LSTM first) Figure 6(c) 

displays a more noticeable and smoother decline in MAPE, 

reflecting the combined strengths of LSTM and CNN layers. 

The hybrid LSTM-CNN model (CNN first) Figure 6(d) 

demonstrates better performance in MAPE reduction 

compared to the CNN model but is not as effective as the 

LSTM-first hybrid.

Start 
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Model Selection 

LSTM, CNN, or 

LSTM-CNN 

Split Data into Training 

and Testing Sets 

Model Training and 

Optimization 

Model Performance 

Evaluation 

Optimal Model 

Selection 

End 

No 
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Table 3. Hyperparameter tuning results for the hybrid LSTM-CNN model 

Model 
Learning 

Rate 

Batch 

Size 
Epochs 

Best Validation 

Loss 

Best Validation 

MAPE 

LSTM 0.001 64 50 0.06 0.1 

CNN 0.001 64 50 0.07 0.15 

Hybrid LSTM-CNN (LSTM 

first) 
0.001 64 50 0.05 0.08 

Hybrid LSTM-CNN (CNN 

first) 
0.001 64 50 0.05 0.08 

Table 4. A comparison between the traffic prediction models' performance 
Model R2 Score MAPE RMSE 

LSTM 0.081472406 3.658087202 0.247960299 

CNN 0.028916215 4.072279317 0.254955508 

Hybrid LSTM-CNN 

(LSTM first) 
0.062918688 3.838256188 0.250452105 

Hybrid LSTM-CNN (CNN 

first) 
0.054123389 4.146928275 0.251624712 

 

 
Fig. 5 Comparison of model loss across epochs for traffic prediction (a) LSTM model loss, (b) CNN model loss, (c) Hybrid LSTM-CNN model loss 

(LSTM first), (d) Hybrid LSTM-CNN model loss (CNN first)

Figure 7 provides residual analysis for traffic volume and 

speed predictions. The distribution of residuals for traffic 

volume Figure 7(a) and traffic speed Figure 7(b) are closely 

centered around zero, indicating minimal prediction errors and 

high accuracy for the LSTM-first hybrid model. This confirms 

the model's robustness in predicting both traffic volume and 

speed. 

 

Figure 8 shows the comparison between predicted and 

actual values for traffic volume and speed using the hybrid 

LSTM-CNN model. The predicted values for traffic volume 

in Figure 8(a) align closely with actual values, demonstrating 

high accuracy. Similarly, the strong correlation between 

predicted and actual traffic speed values in Figure 8(b) further 

validates the model's effectiveness. While in figure 9 presents 

the feature importance analysis, highlighting the most 

significant factors impacting traffic flow predictions. 

Temporal features (time of day, historical traffic data) and 

spatial features (road conditions, weather) are shown to play 

crucial roles in prediction accuracy, providing valuable 

insights for model improvement and application in traffic 

management. Finally, Figure 10 shows the confusion matrix 

for traffic congestion level predictions, illustrating the model's 

accuracy in classifying different congestion levels. The high 

accuracy rates indicate the model's reliability in practical 

traffic management applications.
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Fig. 6 Comparison of model MAPE across epochs (a) LSTM model MAPE (b) CNN model MAPE (c) Hybrid LSTM-CNN model MAPE (LSTM first)  

(d) Hybrid LSTM-CNN model MAPE (CNN first) 

Fig. 8 Prediction vs. Actual values for (a) Traffic volume and (b) Traffic speed using the hybrid LSTM-CNN model. 
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Fig. 9 Feature importance analysis for traffic prediction models 

 

 

 
Fig. 10 Confusion matrix for traffic congestion levels 

 

4. Conclusion 
This study showed the enormous potential of the hybrid 

model of LSTM and CNN for improved accuracy in traffic-

flow forecasting models derived from its ability to capture the 

temporal and spatial dependencies embedded in traffic data. 

The model was exhaustively tested on a completely 

established dataset that originated from diverse sources of 

inputted data—the three lane-wise sensors, reports of volume, 

speed, as well as occupancy collected from highway leased 

line sensors. The metrics R-squared, MAPE, and RMSE were 

persistently directed to the hybrid model, dominating the basic 

LSTM and CNN models. For LSTM-CNN, again, the much 
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better predictive accuracy is proved by the best validation loss 

obtained equal to 0.05 with a MAPE of 0.08. Concretely, the 

hybrid univariate model performed with an R² of 0.063, a 

MAPE value of 3.84%, and an RMSE value of 0.250 with the 

first added transformation LSTM, whereas having the first 

added transformation CNN arrived with an R² value of 0.054, 

MAPE 4.15%, and RMSE 0.252. On the other hand, the 

LSTM-only model resulted in an R² score of 0.081 and MAPE 

and RMSE of 3.66% and 0.248, respectively. The CNN-only 

model had an R² score of 0.029, MAPE of 4.07%, and RMSE 

of 0.255. These results emphasize that the hybrid model is 

very effective in dealing with different intrinsic complexities 

in traffic patterns for a much stronger solution in making 

traffic predictions with greater accuracy and action. The 

enhanced accuracy of the hybrid model can hugely aid traffic 

management and planning, including the rough reduction of 

congestion and rise in road safety.  
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