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ABSTRACT 

The field of Human-Computer Interaction (HCI) is progressing quickly with the incorporation of gesture 

recognition, which requires advanced systems capable of comprehending intricate human movements. This 

study introduces a new Dynamic Adaptation Convolutional Neural Network (DACNN) that can adjust to 

different human hand shapes, orientations, and sizes. This allows for more accurate identification of hand 

gestures over a wide range of variations. The proposed model includes a thorough process of collecting and 

preparing data from the Sign Language MNIST dataset. This is followed by a strong data augmentation 

procedure that provides a wide variety of realistic variations. The architecture utilizes sophisticated 

convolutional layers to leverage the capabilities of deep learning to extract and synthesize essential gesture 

features. A rigorous training procedure, supplemented with a ReduceLROnPlateau callback, was used to 

assure the model's generalization and efficiency. The experimental findings provide remarkable results, 

showing a substantial accuracy of 99% in categorizing a wide range of hand movements. This study makes 

a significant contribution to the field of hand gesture recognition by introducing morphological operations, 

thus enriching input data quality and expanding the model's applicability in diverse HCI environments. 

Keywords-hand gesture recognition; human-computer interaction; deep learning; neural network 

architecture; real-time gesture analysis; morphological data processing; adaptive learning systems 

I. INTRODUCTION  

With advances in artificial intelligence and its increasing 
applications, a deeper understanding of human behavior can 
enhance the interaction between machines and humans [1]. A 
popular topic in computer vision is the study of how people 
behave and how to make computers or robots behave like them 
[2]. Computer systems can analyze visual data to assess human 
behavior, determine their requirements, and then respond 
appropriately. Hand Gesture Recognition (HGR) is an efficient 
method to improve communication between people and robots 
[3]. HGR is often used in human communication as a visual 
means of expressing thoughts through coordinated hand 
movements and serves as the primary communication medium 
for people with speech and hearing impairments [4]. According 
to the World Health Organization, approximately 5% of the 

global population have moderate to severe hearing impairments 
and rely on their local sign languages for communication [5]. 

HGR has significant communicative value, especially for 
people who experience moderate to severe hearing 
impairments. For these people, local sign languages are the 
mainstay of communication. Thus, the ability to recognize and 
interpret hand gestures accurately is not only a technical 
achievement but also a facilitator of inclusion, bridging 
communication gaps in society [6]. HCI is now a crucial part of 
daily activities. The use of hand gestures in HCI has garnered 
significant interest due to its user-friendly approach to 
interaction with technology. Hand gestures are used to convey 
ideas and thoughts through movements of the palm and fingers. 
Individuals should interact with machines using hand 
movements without requiring additional input devices. For 
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effective communication between humans and robots, 
machines must be able to identify hand gestures. Hence, HGR 
has become a significant study field in modern times, serving 
many purposes such as natural user interfaces [7]. 

Gesture recognition with computer technology has great 
potential as it can serve as a translator for sign languages. This 
method could successfully close the communication gap 
between both societies, providing significant benefits in 
promoting engagement and comprehension between those who 
use sign language and those who do not [8]. Sign language 
hand movements can be classified into two types: static and 
dynamic gestures. Static gestures involve placing hands and 
fingers in space without movement, while dynamic gestures 
require continual hand movements throughout time. HGR in 
sign language translation can be recognized by two methods: 
vision-based and sensor-based recognition [9]. Sensor-based 
techniques require the signer to wear electronic equipment such 
as data gloves, accelerometers, or bands. These components 
detect changes in movement and transmit the data to a 
computer for further analysis. Although research has shown 
promising recognition results for this technology, its cost and 
impracticality make it unsuitable for common HCI interfaces 
for consumers [10]. Meanwhile, vision-based HGR plays a 
pivotal role in improving HCI by allowing users to 
communicate with machines more intuitively and naturally 
[11]. This technology has attracted significant attention from 
researchers due to its potential applications in various fields, 
including sign language interpretation, virtual reality, 
augmented reality, and assistive technologies. Using Deep 
Learning (DL) techniques, researchers have been able to 
revolutionize the field of gesture recognition, making 
significant advances in the accuracy and efficiency of 
recognition systems. DL algorithms have enabled the 
development of sophisticated models capable of interpreting 
complex hand gestures in real time, thus improving the overall 
user experience in HCI applications [12].  

The use of DL in sensor-based HGR has transformed 
traditional paradigms, allowing for more robust and accurate 
recognition systems [13]. In [14], real-time HGR was proposed 
using the YOLOv3 model. In [15], a multi-model sensor-based 
system was proposed for HGR. By analyzing and interpreting 
hand movements captured through cameras or sensors, DL 
models can extract meaningful features and patterns, enabling 
machines to effectively understand and respond to hand 
gestures. This technology has paved the way for the 
development of innovative HCI systems that can interpret a 
wide range of gestures with high precision, facilitating 
seamless interaction between users and machines [16].  

In recent years, the surge of interest in vision-based HGR 
has been largely fueled by remarkable breakthroughs in DL. 
Many studies have explored a spectrum of DL architectures, 
pushing the boundaries of how machines interpret human 
gestures. For instance, in [17], a DL approach was proposed for 
age-based gesture classification for Indian sign language. The 
core of these investigations lies in the quest to provide 
computers with a level of perceptual intelligence that mirrors 
human intuition [18]. This quest is fundamental for the 
evolution of interfaces that require minimal effort and are 

intuitive for users, leading to a seamless HCI experience. 
Convolutional Neural Networks (CNNs) have emerged as one 
of the most powerful tools for image analysis and are used in 
the HGR domain. CNNs excel at hierarchical feature 
extraction, which is crucial for recognizing complex patterns in 
visual data. By learning spatial hierarchies of features, CNNs 
can robustly handle the variability in hand gesture appearance 
due to differences in hand shapes, sizes, and orientations 
between individuals. This adaptive feature extraction has 
proven essential for the development of gesture recognition 
models that can operate with high accuracy in diverse user 
groups [19]. 

Furthermore, the dynamism of hand gestures necessitates 
the use of models that can understand temporal dependencies. 
Recurrent Neural Networks (RNNs) are adept at processing 
sequences of data, making them ideal for analyzing the 
temporal progression of hand gestures. When it comes to 
continuous gesture recognition or interpreting gestures that 
consist of a series of movements, RNNs can provide context by 
considering the sequence of frames, leading to more accurate 
recognition of gestures over time [20]. Incorporating attention 
mechanisms into neural network architectures marks a 
significant advance in the field. Attention mechanisms enable 
models to focus on the most relevant parts of the input data, 
similar to how humans pay attention to certain aspects of a 
visual scene while ignoring others. This selective focus has 
been instrumental in improving the performance of gesture 
recognition systems, especially in cluttered or dynamic 
environments where irrelevant movements can easily confound 
less sophisticated models [21]. 

Therefore, the application of Machine Learning (ML) and 
DL models reveals the potential of these technologies in 
learning complex gesture patterns. Hybrid models and 
ensemble classifiers, which combine multiple techniques to 
improve recognition rates, are innovative approaches being 
explored in the field [22]. Additionally, the use of hand motion 
segmentation and real-time detection techniques further 
enhances the ability to recognize gestures accurately and 
efficiently [20]. Furthermore, the exploration of multimodal 
HGR, which combines information from different sources such 
as skeletal data, depth data, and RGB images, presents a 
holistic approach to understanding and interpreting human 
gestures. This approach not only increases the accuracy of 
gesture recognition but also enhances the system's ability to 
recognize gestures in a wide range of scenarios and 
environments [23]. Therefore, it is important to have a hand 
gesture model that can dynamically adapt to the morphological 
features of hand gestures. 

This study investigates advances in vision-based HGR for 
HCI using DL methods and provides insights into the potential 
to enhance gesture recognition systems and shape the future of 
HCI. The contributions of this work are:  

 Presents a novel neural network architecture that 
emphasizes dynamic adaptability to various hand gestures, 
distinguishing itself from previous studies that focus 
predominantly on static HGR. 
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 Uses cutting-edge DL methods for both feature extraction 
and classification tasks, using layers and procedures that are 
particularly designed to address the intricacies of HGR. 

II. METHODOLOGY 

Vision-based HGR is a complex field that is leading the 
way in innovative GCI, especially in the area of DL. The 
intricate and diverse nature of human hand motions poses a 
significant obstacle that requires an advanced approach to 
utilize neural networks. The proposed architecture is designed 
to address this problem using a custom DL model that can be 
adjusted to the various morphological features of hands. This 
approach combines data preprocessing, augmentation, and a 
sophisticated CNN architecture to improve flexibility and 
accuracy in recognition. Figure 1 shows the general flowchart 
of the method followed. 

 

 
Fig. 1.  Methodology. 

A. Data Collection and Preprocessing 

The first phase was to collect and prepare the data for 
training the DL model. The Sign Language MNIST dataset was 
used [24]. This dataset was preprocessed by removing labels 
for separate handling and normalizing the pixel values to a 
range of 0 to 1 for computational efficiency. The dataset 
comprises images of hand gestures, each representing a 
different letter of the sign language alphabet, which were 
reshaped from 1-D vectors to 28×28 pixel images to match the 
input requirements of the CNN. The preprocessing phase was 
extensive and crucial for the subsequent recognition process. It 
started with face detection and removal to ensure that only 
hand gestures are analyzed, eliminating potential distractions 
for the model. Following this, the images were converted from 
RGB to the HSV color space, a transformation that often leads 
to better segmentation results due to its closer alignment with 
the human perception of colors. After conversion, skin color 
segmentation was applied to isolate the hand from the 
background, which is particularly beneficial for focusing the 
model's learning on the gestures themselves. Finally, 
morphological operations such as erosion and dilation were 
used to enhance the quality of the segmented hand image, 
removing noise and filling gaps in the detected hand region. 

B. Data Augmentation 

Data augmentation aimed to simulate the kind of variability 
that a real-world application would encounter. The 
ImageDataGenerator not only performs the standard 
transformations but is fine-tuned to reflect the nuances of hand 
gestures. It was ensured that the augmentations did not stray 
too far from realistic scenarios, as overly distorted images 
could harm the model's learning process. This phase was 
specifically designed to address the core objective of the study, 
which is to achieve a model that dynamically adapts to diverse 
morphologies. By simulating a wide variety of angles and hand 
positions, the model was trained to recognize the essence of 
each gesture, independent of the hand's shape, size, or 
orientation. 

C. Model Architecture 

The feature extraction process is the heart of the model 
architecture and is carried out by the convolutional layers. 
These layers dissect the input images into features that the 
network will use to distinguish one gesture from another. The 
network's ability to extract and learn from these features is 
paramount to the overall adaptability and accuracy of the HGR 
system. Once the features are extracted, the network's fully 
connected layers interpret them, effectively synthesizing the 
information into a comprehensive understanding that leads to 
classification. Following the convolutional layers, max-pooling 
layers were implemented to reduce spatial dimensions, thus 
reducing the computational load and potentially overfitting. 
Dropout layers were also strategically included to randomly 
ignore a subset of neurons during training, forcing the network 
to learn redundant representations of the data. The final part is 
a densely connected layer that interprets the features extracted 
by the convolutional layers, culminating in a softmax activation 
function that outputs a probability distribution over the 24 
classes of hand gestures. The softmax layer then assigns a 
probability to each gesture class, ensuring that the output is a 
clear and decisive prediction of the input gesture. 

D. Training and Validation 

The learning process was fine-tuned using the 
ReduceLROnPlateau callback to make training adaptable by 
reducing the learning rate when the validation accuracy 
plateaued. This optimization prevents learning stagnation and 
promotes the discovery of optimal weights within the network. 
Validation was implemented as a continuous check on the 
model's ability to generalize. Using a validation set separate 
from the training data was aimed at monitoring and ensuring 
that the model was learning to recognize gestures and not just 
memorizing the training dataset.  

E. Performance Evaluation 

The performance evaluation phase was multi-faceted, 
starting with a classification report that provided a detailed 
account of the model's precision, recall, and F1-score for each 
class. This evaluation is vital for understanding the model's 
efficacy and identifying any specific gestures that may require 
further attention or data augmentation. The confusion matrix 
offers a visual and quantitative analysis of the model 
performance, highlighting instances of misclassification. This 
matrix is a powerful tool for pinpointing where the model 
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excels and where it may confuse one gesture with another. 
Such insights are crucial for ongoing model refinement and 
achieving adaptability to diverse hand morphologies. 

III. RESULTS AND DISCUSSION 

Figure 2 shows the results of converting images from RGB 
to HSV. Skin color segmentation was instrumental, as it refined 
the focus on gestural nuances by isolating hands from varying 
backgrounds. This preprocessing not only increased 
computational efficiency but also improved learning accuracy 
by eliminating unnecessary visual distractions and facilitating 
the detection of morphological operations. 

 

 
Fig. 2.  RGB to HSV images. 

A. Results 

Figure 3 details the architecture of the neural network 
model. The initial convolutional layer (conv2d), with its 
multiple filters, plays a critical role in detecting various 
features in the input images, such as edges and textures. The 
subsequent batch normalization layer is crucial in stabilizing 
the learning process by normalizing the output of the previous 
convolutional layer, leading to faster convergence and 
improved overall performance. The use of max-pooling 
(max_pooling2d) reduced the spatial dimensions of the feature 
maps, effectively summarizing the presence of features while 
making the detection process invariant to small translations of 
the input. This operation also helps to reduce the computational 
load. Dropout layers act as a form of regularization to prevent 
overfitting, encouraging the network to learn more robust 
features that are not reliant on a small number of neurons. 

 

 
Fig. 3.  Model architecture. 

Figure 4 shows the training progression over the epochs, 
demonstrating the model's learning efficiency. The gradual 
decrease in loss and consistent improvement in both training 
and validation accuracy highlight the model's capability to 
learn and generalize from the dataset. The model's validation 
accuracy aligns closely with the training accuracy, suggesting 
that the model is not overfitting but rather capturing 
generalizable patterns. The plateauing of accuracy and 
subsequent reduction in learning rate by the 
ReduceLROnPlateau callback indicates an effective strategy to 
further improve the model's weights when learning 
improvement stagnates. The final epoch shows that the model 
achieves impressive accuracy, a clear indication of the model's 
high proficiency in recognizing and classifying hand gestures. 

 

 
Fig. 4.  Training loss per epoch. 

The reduction in learning rate after the ninth epoch suggests 
that the model's performance began to plateau, and the 
intervention helped to fine-tune the learning process, which is 
observed in the improved post-adjustment accuracy. The model 
achieved an impressive final accuracy rate, indicating a high 
level of precision in recognizing and classifying hand gestures, 
as shown in Figure 5. The accuracy plot on the left exhibits a 
rapid ascent to high accuracy levels during the initial epochs, 
followed by a stable plateau, with the training accuracy (green 
line) hovering close to perfection at 0.99 and the validation 
accuracy (red line) closely mirroring this trend. This 
demonstrates the model's substantial capability to learn and 
generalize from the dataset without overfitting, as there is 
minimal divergence between the training and validation 
accuracy scores. The loss plot on the right underscores the 
model's efficient learning curve, with a steep decline in the 
initial epochs reflecting a rapid reduction in the error rate of the 
model's predictions. Following this swift descent, both the 
training and testing loss exhibit a steady state with minor 
fluctuations, indicating a stable convergence. 

 

 
Fig. 5.  Training and testing accuracy and loss. 

Achieving a 99% accuracy score is a notable indication of 
the model's performance, highlighting its strength and the 
success of the implemented architecture and training methods. 
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The model's near-flawless accuracy demonstrates its 
remarkable ability to identify and categorize the hand gestures 
presented, which aligns with the initial objective of developing 
a versatile HGR system. Figure 6 presents the correct 
prediction indices in the form of a confusion matrix, revealing 
a nearly perfect classification with a high density of true 
positives along the matrix's diagonal. This visualization 
provides compelling evidence of the model's proficiency in 
differentiating between gesture classes with minimal confusion. 
The accuracy score of 0.99% suggests that the vast majority of 
gestures were correctly classified, with only a minimal number 
scattered across the off-diagonal cells. This near-perfect 
distribution demonstrates the model's exceptional ability not 
only to grasp the complex patterns within the hand gesture data 
but also to generalize well to new, unseen data, as indicated by 
the validation results. 

 

 
Fig. 6.  Confusion matrix. 

B. Gesture Output 

Figure 7 demonstrates the model's ability to discern and 
accurately classify hand gestures. The agreement between the 
predicted and actual classes highlights the effectiveness of the 
proposed architecture. For instance, in class 6, the model 
correctly identifies the gesture with a high degree of certainty, 
indicating that the nuanced features of this class have been 
effectively captured during training. Similarly, the results for 
class 5 showcase the model's ability to recognize and interpret 
gestures with subtle differences from other classes, a crucial 
requirement in the practical application of gesture-based 
communication. The accuracy is further exemplified in classes 
9 and 0. Here, the model not only demonstrates its strength in 
capturing the static positioning of the hands but also its 
proficiency in understanding the dynamic nature of gesture 
transitions. The system responds to both static and dynamic 
gestures, enabling a more fluid and natural interaction within 
the HCI realm. These visual outputs are not just a mere display 
of classification correctness but also an affirmation of the 
underlying sophisticated data processing and learning 
mechanisms. The seamless alignment between predicted and 
actual classes across a variety of gestures underscores the 
model's robust generalization capabilities and reinforces the 
model's potential for deployment in real-world scenarios where 
the interpretation of a diverse array of hand gestures is 
paramount. 

 
Fig. 7.  Output of hand gestures. 

C. Comparative Study 

When it comes to the advancing field of HGR using neural 
networks, it is crucial to evaluate the effectiveness of new 
models by comparing them with previous solutions. This 
proposed architecture, hereafter referred to as the Dynamic 
Adaptation Convolutional Neural Network (DACNN), was 
compared with three other established models, focusing on the 
accuracy of each model as the primary metric for performance 
evaluation. The DACNN model was compared to: 

 Static Feature Convolutional Neural Network (SFCNN) 
[25], which relies on static hand features without dynamic 
adaptation, with a reported accuracy of 0.94. 

 Basic Convolutional Neural Network (BCNN) [26], a 
straightforward CNN model without advanced adaptations 
or augmentation techniques that achieved 0.90 accuracy. 

 Enhanced Geometric Neural Network (EGNN) [27], which 
uses geometric feature enhancements for gesture 
recognition, with an accuracy of 0.92. 

TABLE I.  ACCURACY COMPARISON 

# Model Name Reference Accuracy 

1 SFCNN [25] 0.94% 
2 BCNN [26] 0.90% 
3 EGNN [27] 0.92% 
4 DACNN Proposed  0.99% 

 
The DACNN model significantly outperforms its 

counterparts in accuracy. Although SFCNN, BCNN, and 
EGNN demonstrate competent gesture recognition capabilities, 
they lack the dynamic adaptability and advanced feature 
processing of DACNN. DACNN's superior performance is 
attributed to its innovative network design, which incorporates 
mechanisms to handle variability in hand gestures more 
effectively. These include a deeper layer structure, advanced 
data augmentation techniques, and the inclusion of dynamic 
adaptability in recognizing continuous gestures. The high 
accuracy of DACNN demonstrates its robustness against 
overfitting, a common challenge in complex models. This was 
achieved through a sophisticated training regimen that includes 
dropout layers for regularization and ReduceLROnPlateau 
callback to fine-tune learning rates. This comparative study 
presents the DACNN model as a leading-edge solution, 
offering the potential for extensive applications in HCI, sign 
language interpretation, and beyond. 
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IV. CONCLUSION 

This study introduced the DACNN model, which marks a 
significant step forward in the field of HGR for HCI. DACNN 
demonstrated a profound ability to dynamically adapt to the 
diverse morphological characteristics of human hands, boasting 
an impressive accuracy rate of 0.99. This breakthrough is a 
direct result of the model's sophisticated architecture, which is 
designed to effectively process and learn from an extensive 
array of hand shapes, orientations, and sizes. The success of the 
DACNN model underlines the importance of comprehensive 
data preprocessing and innovative augmentation techniques in 
enhancing the adaptability and accuracy of HGR systems. The 
efficacy of this approach was consistently reflected in various 
phases of model training and validation, and comparison with 
other models demonstrated its superior performance and 
potential. The success of DACNN opens up numerous avenues 
for future research and applications. One immediate direction is 
its integration into real-time HCI systems, exploring its 
responsiveness and utility in dynamic environments. 
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