Osman, Bashir Mohamed and Muse, Abdillahi Mohamoud Sheikh (2024) Predictive analysis of Somalia’s economic indicators using advanced machine learning models. Cogent Economics & Finance, 12 (1). ISSN 2332-2039
Full text not available from this repository.Abstract
Abstract
Accurate Gross Domestic Product (GDP) prediction is essential for economic planning and policy formulation. This paper evaluates the performance of three machine learning models—Random Forest Regression (RFR), XGBoost, and Prophet—in predicting Somalia's GDP. Historical economic data, including GDP per capita, population, inflation rate, and current account balances, were used in training and testing. Among the models, RFR achieved the best accuracy with the lowest MAE (0.6621%), MSE (1.3220%), RMSE (1.1497%), and R-squared of 0.89. The Diebold-Mariano p-value for RFR (0.042) confirmed its higher predictive accuracy. XGBoost performed well but with slightly higher error, yielding an R-squared of 0.85 and p-value of 0.063. In contrast, Prophet had the highest forecast errors, with an R-squared of 0.78 and p-value of 0.015. For enhanced interpretability, SHapley Additive exPlanations (SHAP) were applied to RFR, identifying lagged current account balance, GDP per capita, and lagged population as key predictors, along with total population and government net lending/borrowing. SHAP plots provided insights into these features' contributions to GDP predictions. This study highlights RFR's effectiveness in economic forecasting and emphasizes the importance of current and lagged economic indicators.
Item Type: | Article |
---|---|
Subjects: | A General Works > AC Collections. Series. Collected works |
Divisions: | Faculty of Economics > Department of Statistics & Planning |
Depositing User: | Center for Research and Development SIMAD University |
Date Deposited: | 16 Nov 2024 11:34 |
Last Modified: | 16 Nov 2024 11:34 |
URI: | https://repository.simad.edu.so/id/eprint/470 |